Thursday, 27. February 2020 - 10:15, room 602
Maciej Dołęga
Random Young diagrams and the approximate factorization property
We explain the concept of characters of the symmetric group with the approximate factorization property, introduced by Biane and developed by Śniady, and its role in the study of the asymptotic behavior of large Young diagrams. We discuss how to extend these ideas to study the asymptotic behavior of deformed Young diagrams, which arise from classical deformations of symmetric functions.
Thursday, 30. January 2020 - 10:15, room 602
Piotr Śniady
Poisson limit theorems related to random Young diagrams
We investigate a number of asymptotic questions related to Robinson-Schensted algorithm applied to a random input and show that the answer for each of them is given by the Poisson process. The first problem concerns the growth of the bottom rows of the Young diagram which is subject to Plancherel growth process. The second problem concerns the evolution in time of the position of the box with a specified number in the insertion tableau as new numbers are inserted into the tableau. The third problem concerns the shape of the bumping route when a specified number is inserted into a large Plancherel-distributed tableau and, in particular, the number of the row in which the bumping route enters a specified column
Thursday, 09. January 2020 - 10:15, room 602
Romuald Lenczewski
Niezależność ortogonalna
Postaram się przedstawić pojęcie niezależności ortogonalnej, która pojawia się w naturalny sposób w kontekście zasady subordynacji dla addytywnego i multiplikatywnego splotu wolnego, jak również w podejściu operadowym do niezależności nieprzemiennej. Posiada naturalny iloczyn grafów z korzeniem, który jest kanonicznie związany z iloczynem wolnym grafów. Omówię również inne pojęcia z tą niezależnością związane, takie jak iloczyn ortogonalny stanów, addytywny splot ortogonalny i ewentualnie multiplikatywny splot ortogonalny.
Thursday, 19. December 2019 - 10:15, room 602
Franz Lehner
The trace method for cotangent sums
The main result of this talk is a contribution to a popular problem from classical calculus of trigonometric function, namely the evaluation of sums integer powers of the cotangent in closed form and a combinatorial analysis of the coeffcients of the resulting polynomial expressions. These turn out to be positive integer valued polynomials with interesting combinatorial properties. Our main observation is that the cotangent values are the eigenvalue of a simple self-adjoint matrix and therefore the trace method is applicable.
Thursday, 07. November 2019 - 10:15, room 602
Adrian Dacko
V-monotoniczne centralne twierdzenie graniczne
W referacie przypomnimy pojęcie V-monotonicznej niezależności, sformułujemy odpowiednie centralne twierdzenie graniczne oraz omówimy jego kombinatorykę. Zostanie przedstawione podejście do uzyskania rekurencji na momenty parzystego rzędu standardowego V-monotonicznego rozkładu gaussowskiego (przy pomocy odpowiednich operatorów gaussowskich określonych na tzw. ciągłej V-monotonicznej przestrzeni Focka). Z tej rekurencji, rozwiązując odpowiednie zagadnienie początkowe, na które składa się równanie różniczkowe zwyczajne typu Abela (II-go rodzaju), otrzymuje się funkcję tworzącą momenty tego rozkładu w postaci uwikłanej oraz, co za tym idzie, jego część absolutnie ciągłą (także w postaci uwikłanej).
Thursday, 30. October 2019 - 10:15, room 602
Piotr M. Hajac (IMPAN)
V-monotoniczne centralne twierdzenie graniczneFrom pushouts to pullbacks: a sample of noncommutative topology
In topology, pushouts are formal recipes for collapsing and gluing topological spaces. For instance, shrinking the boundary circle of a disc to a point yields a sphere, shrinking the equator of a sphere to a point gives two spheres joined at the point, collapsing the boundary of a solid torus to a circle, or gluing two solid tori over their boundaries, produces a three-sphere. In noncommutative topology, such procedures are expressed in terms of pullbacks of C*-algebras. It turns out that one can visualize a pullback of C*-algebras of graphs as a pushout of these graphs thus providing much needed intuition to the abstract setting of operator algebras. The goal of this talk is to discuss how to make this visualization rigorous by conceptualizing abundant examples from noncommutative topology that lead to a new concept of morphisms of graphs. In particular, we replace the standard idea of mapping vertices to vertices and edges to edges by the more flexible idea of mapping finite paths to finite paths. (Based on joint works with Alexandru Chirvasitu, Sarah Reznikoff and Mariusz Tobolski.)
Thursday, 12. October 2019 - 10:15, room 602
Janusz Wysoczański
O pewnej C*-algebrze generowanej przez częściowe izometrie i spektrum jej maksymalnej C*-podalgebry abelowej
Operatory kreacji i anihilacji na słabo monotonicznej przestrzeni Focka są częściowymi izometriami. W referacie podam własności C*-algebry, którą generują. Opiszę także jej maksymalną abelową C*-podalgebrę (MASA). Dla tej MASA pokażę w jaki sposób można scharakteryzować jej przestrzeń Gelfanda czyli spektrum.
Thursday, 17. October 2019 - 10:15, room 602
Ryszard Szwarc
Closable Hankel forms and moment problems
In a paper from 2016 D. R. Yafaev considers Hankel operators associated with Hamburger moment sequences qn and claims that the corresponding Hankel form is closable if and only if the moment sequence tends to 0. The claim is not correct, since we prove closability for any indeterminate moment sequence but also for certain determinate moment sequences corresponding to measures with finite index of determinacy. It is also established that Yafaev’s result holds if the moments satisfy q1/(2n)2n = o(n).
Wednesday, 10.10.2019, 10:15-12:00, room 602
Marek Bożejko (IMPAN)
Positivity and Gaussian processes
We will present relations between positive definite kernels (also operator valued) and classical and quantum Gaussian processes following the paper of Yanqui Qiu - "On a result of Bozejko on extension of positive definite kernels" - arXiv - 2019 and Bull. London Math.Soc 2019 and the results of E.Hirai, T.Hirai and A.Hora and M.Guta and myself on Thoma representations of central positive definite functions on Coxeter groups of type A and B, i.e. on permutations group and sign-permutation group on infinite many letters.
Wednesday, 4.09.2019, 10:15-12:00, room 603 Vitonofrio Crismale (University of Bari Aldo Moro) Sums and limit distribution for non symmetric weakly monotone position operators
In this talk we present the asymptotic vacuum distribution, under an appropriate scaling, of a family of partial sums of non-symmetric position operators on weakly monotone Fock space. This can be seen as the "Poisson type" limit measure in our setting. We preliminary show that any single operator has the vacuum law belonging to the free Meixner class. After establishing some relations between the combinatorics of Motzkin and Riordan paths, we give a recursive formula for the vacuum moments of the law of any partial sum. We exploit these results to achieve the asymptotic distribution as described above, which turns out to be indeed the sum of an atomic and an absolutely continuous part. Based on joint work with M.E. Griseta and J. Wysoczanski.