2024-11-28 (czwartek), 12:15 - 14:00

Dr Nikolai Kriukov (University of Amsterdam)

Functional Central Limit Theorem for the simultaneous subgraph count of dynamic Erdős-Rényi random graphs

Streszczenie:
In this talk we consider a dynamic Erdős-Rényi random graph with independent identically distributed edge processes. Our goal is to describe the joint evolution of count of different subgraphs. Central result of this talk is joint functional convergence of the subgraph counts to a specific multidimensional Gaussian process, which holds under mild assumptions on the edge processes, most notably a Lipschitz-type condition.

2024-10-17 (czwartek), 12:15 - 14:00

Prof. Krzysztof Dębicki (Uniwersytet Wrocławski)

Ekstrema odbitych (w 0) procesów gaussowskich

Streszczenie:
W referacie opowiemy o najnowszych wynikach dotyczących asymptotyk warunkowego czasu przebywania nad wysoką barierą przez odbite procesy Gaussowskie o stacjonarnych przyrostach. Referat oparty jest na wspólnych pracach z E. Hashorvą (University of Lausanne), G. Jasnovidovem (University Of Lausanne), P. Liu (University of Essex), Z. Michną (Politechnika Wrocławska).

2024-06-27 (czwartek), 12:15 - 14:00

Prof. Bartłomiej Błaszczyszyn (INRIA, Paris)

Hyperuniformity

Streszczenie:
Hyperuniformity characterizes random spatial structures that exhibit slower growth in variance at large scales compared to Poisson structures emerging as a consequence of the complete independence assumption. Initially conceptualized in statistical physics by Torquato and Stillinger (2003), hyperuniform systems have garnered significant interest due to their unique position between perfect crystals, liquids, and glasses. These distinctive properties make them valuable for designing innovative materials, Monte Carlo numerical integration, and they have gained attention in various applied contexts, offering insights into phenomena ranging from DNA and the immune system to photoreceptors, urban systems, and cosmology.
Detecting and quantifying hyperuniformity is crucial across these diverse domains. Despite this, statistical tests for hyperuniformity have only recently gained attention. In ongoing work with F. Lavancier and G. Mastrilli, we address the challenge of estimating the "strength" of hyperuniformity, related to the exponent of the spectrum at zero wavelength, in a class of stationary point processes in Euclidean. The mathematical core concept is that the variance of linear statistics, which are based on smooth and rapidly decreasing functions, grows in a way that explicitly involves this exponent. By leveraging the multivariate central limit theorem for many of these statistics, which involve orthogonal functions at different scales (wavelets), one obtains an asymptotically consistent estimator of the "strength" of hyperuniformity, based on a single realization of the point process, with explicit confidence intervals.
We investigate this approach through numerical simulations using point process models and a real dataset.

2024-06-13 (czwartek), 12:15 - 14:00

dr hab. Paweł Lorek (Uniwersytet Wrocławski)

Negative "probabilities" (in the theory of duality of Markov chains) and set-valued dual chains

Streszczenie:
We will present preliminary results on i) negative "probabilities" (focusing on duality in Markov chains) and ii) set-valued dual Markov chains.
i) Paul Dirac and Richard Feynman have argued for the validity and utility of negative "probabilities." While these have been useful tools for solving complex problems, they have not been associated with real processes. We propose a method for "realizing" processes that represent transition probabilities with "negative entries." This method emerged from work on dualities in Markov chains, aiding in modeling and simulating processes where traditional methods fall short, especially in systems lacking monotonicity. However, its applications are potentially much broader.
ii) To address problems for a given Markov chain (e.g., winning probability, rate of convergence to stationarity), we can compute a dual chain (strong stationary dual or Siegmund dual) to solve potentially easier problem (e.g., stationary distribution or absorption time). For chains lacking specific types of monotonicity, instead of resorting to negative "probabilities," we demonstrate a construction of a set-valued dual chain that always exists.
This talk is a preliminary report on joint work with Bartłomiej Błaszczyszyn (INRIA, Paris). It will mainly present the ideas and methods, applied to 2 or 3 state chains.

2024-05-16 (czwartek), 13:15 - 14:00

prof. Vitali Wachtel (Bielefeld University)

Random walks in cones

Streszczenie:
In this talk I am going to discuss the behaviour of walks constrained to some parts of the space. I will concentrate on two rather simple examples which however show the depth of the corresponding area of mathematics. I will begin with the classical Ballot problem, which can be seen as a walk conditioned to stay positive. I will then turn to a model for gambler's ruin problem with many players.

2023-11-09 (czwartek), 12:15 - 14:00

Pavel Ievlev (Université de Lausanne)

Extremes of multivariate locally-additive Gaussian random fields

Streszczenie:
In this talk, I am going to present some of my recent results in joint work with Nikolai Kriukiv on the extremes of multivariate Gaussian random fields. I will begin with the 2019 paper by K. Dębicki, E. Hashorva, and L. Wang, which laid the groundwork for further investigations in the area of multivariate Gaussian extremes. I will explain that some of the assumptions of this paper may not hold in cases that are practically important, and I will discuss how these issues can be amended by considering second-order contributions — I will clarify this terminology during the talk. Next, we will explore what is, in a sense, the simplest extension of these results from processes (indexed by R) to fields (indexed by R^n), which we refer to as 'locally-additive'. As an application of this extension, I will present an exact asymptotic result for the probability that a real-valued process first hits a high positive barrier and then a low negative barrier within a finite time horizon.

2023-10-26 (czwartek), 12:15 - 14:00

prof. Krzysztof Dębicki (Uniwersytet Wrocławski)

Ekstrema pól gaussowskich z nie-addytywną strukturą zależności, z zastosowaniem do "performance tables" i wartości własnych gaussowskich macierzy unitarnych

Streszczenie:
Zbadamy dokładną asymptotykę rozkładu supremum pewnej klasy pól gaussowskich, które posiadają lokalnnie nie-addytywną strukturę zależności. Uzyskane wyniki zilustrujemy zastosowaniem do badania wartości własnych gaussowskich macierzy unitarnych. Wykład oparty jest na wspólnej pracy z Pengiem Liu (Univ. of Essex) i Longiem Bai (Univ of Nankai).

2023-06-29 (czwartek), 13:15 - 14:00

prof. Tomasz J. Kozubowski (University of Nevada, Reno)

The Classical Laplace Distribution: Fundamental Properties, Extensions, and Applications

Streszczenie:
We review basic facts about the classical Laplace distribution and its asymmetric generalization. Both distributions naturally arise in connection with random summation and quantile regression settings, and offer an attractive and flexible alternative to the normal (Gaussian) distribution in a variety of setting, where the assumptions of symmetry and short tail are too restrictive. The growing popularity of the Laplace-based models in recent years is due to their fundamental properties, which include a sharp peak at the mode, heavier than Gaussian tails, existence of all moments, infinite divisibility, and, most importantly, random stability and approximation of geometric sums. Since the latter arise quite naturally, these distributions provide useful models in diverse areas, such as biology, economics, engineering, finance, geosciences, and physics. We review fundamental properties of these models, which give insight into their applicability in these areas, and discuss their various extensions, including Laplace-based time series and stochastic processes. This is a joint work with K. Podgorski.

2023-06-29 (czwartek), 12:15 - 13:00

prof. Anna K. Panorska (University of Nevada, Reno)

The Greenwood statistic, stochastic dominance, clustering and heavy tails

Streszczenie:
The Greenwood statistic Tn and its functions, including sample coefficient of variation, often arise in testing exponentiality or detecting clustering or heterogeneity. We provide a general result describing stochastic behavior of Tn in response to stochastic behavior of the sample data. Our result provides a rigorous base for constructing tests and assuring that confidence regions are actually intervals for the tail parameter of many power-tail distributions. We also present a result explaining the connection between clustering and heaviness of tail for several classes of distributions and its extension to general heavy tailed families. Our results provide theoretical justification for Tn being an effective and commonly used statistic discriminating between regularity/uniformity and clustering in presence of heavy tails in applied sciences. We also note that the use of Greenwood statistic as a measure of heterogeneity or clustering is limited to data with large outliers, as opposed to those close to zero.

2023-06-15 (czwartek), 12:15 - 14:00

prof. Oleksandr Marynych (Taras Shevchenko National University of Kyiv)

A group theoretic approach to convex hulls and (K,G)-convex hulls: basic properties, examples and applications

Streszczenie:
The standard convex closed hull of a subset of the Euclidean space is defined as the intersection of all images, under the action of a group of rigid motions, of a half-space containing the given set. We propose a generalization of this classical notion, that we call a (K,H)-hull, and which is obtained from the above construction by replacing a half-space with some other convex closed subset K of the Euclidean space, and a group of rigid motions by a subset H of the group of invertible affine transformations. The above construction encompasses and generalizes several known models in convex stochastic geometry and allows us to gather them under a single umbrella.

2023-05-11 (czwartek), 12:15 - 14:00

prof. Tomasz Rolski (Uniwersytet Wrocławski)

Simulation of uniformly distributed points on some geometrical objects

Streszczenie:
We will survey various methods for simulation of uniformly distributed points on geometrical objects. In particular we consider d-dimensional balls, d-1-dimensional spheres. Interesting and not obvious problems appear when simulating random points on ellipses or ellipsoids. We conclude with a "numerical methods" for generating random points on parametrized objects like hyper-ellipsoids.

2023-03-30 (czwartek), 12:15 - 14:00

dr Marek Arendarczyk (Uniwersytet Wrocławski)

From slash distributions to generalized convolutions

Streszczenie:
An $\alpha$-slash distribution built upon a random variable $X$ is a heavy tailed distribution corresponding to $Y=X/U^{1/\alpha}$, where $U$ is standard uniform random variable, independent of $X$. We point out and explore a connection between $\alpha$-slash distributions, which are gaining popularity in statistical practice, and generalized convolutions, which come up in probability theory in connection with generalizations of the standard concept of convolution of probability measures. In particular, we show that the maximum of independent random variables with $\alpha$-slash distributions is also a random variable with an $\alpha$-slash distribution and discuss possible generalizations of this observation. Our theoretical results are illustrated by several examples involving standard and novel probability distributions.

2023-03-02 (czwartek), 12:15 - 14:00

prof. Krzysztof Dębicki (Uniwersytet Wrocławski)

Ekstrema odbitych procesów gaussowskich w dyskretnym czasie

Streszczenie:
Dla odbitego (w 0) procesu gaussowskiego o stacjonarnych przyrostach, badamy asymptotyki ogona rozkładu supremum i infimum, gdy czas jest dyskretny. Referat oparty jest na wspólnej pracy z Grigorijem Jasnovidovem (University of Lausanne).

2022-12-01 (czwartek), 12:15 - 14:00

Alicja Kołodziejska (Uniwersytet Wrocławski)

Spacery losowe w rzadkim losowym środowisku

Streszczenie:
Spacer losowy w rzadkim losowym środowisku to prosty spacer na zbiorze liczb całkowitych. Środowisko, w którym się porusza, zadane jest przez losowy wybór punktów, w których prawdopodobieństwo pójścia w prawo jest również wybrane losowo; w pozostałych punktach spacer porusza się jak symetryczny spacer losowy. Podczas referatu przedstawię pokrótce dotychczasowe wyniki dotyczące tego modelu oraz opowiem o słabych twierdzeniach granicznych, jakie uzyskaliśmy w ramach wspólnej pracy z Dariuszem Buraczewskim i Piotrem Dyszewskim.

2022-11-17 (czwartek), 12:15 - 14:00

dr hab. Paweł Lorek (Uniwersytet Wrocławski)

Dualności w łańcuchach Markowa z częściowo uporządkowaną przestrzenią stanów

Streszczenie:
Wystąpienie będzie składało się z dwóch części.

Część 1. Będzie to przegląd wyników dotyczących: i) dualności Siegmunda, która pozwala badać prawd. ruiny w modelach typu "zagadnienie ruiny gracza"; ii) tzw. strong stationary duality (SSD), która pozwala badać prędkość zbieżności do stacjonarności; iii) "Intertwining" -- pozwala na studiowanie czasu do pochłonięcia. Podamy idee konstrukcji takich łańcuchów dualnych w przypadku częściowo uporządkowanej przestrzeni stanów. Podamy np. wzory na prawdopodobieństwo wygrania w pewnych wielowymiarowych modelach, nowe wzory na wartość oczekiwaną czasu do pochłonięcia (oraz tzw. warunkowego czasu do pochłonięcia) w jednowymiarowych modelach. Wszystkie trzy dualności będą użyte do podania tzw. optymalnego czasu do stacjonarności dla symetrycznego błądzenie po okręgu -- co jest poprawieniem wyniku Diaconisa i Filla.

Część 2. Pokażemy jak można wykorzystać dualność Siegmunda i SSD do podania wzorów na prawdopodobieństwa przejścia między stanami w dokładnie $n$ krokach. Metodę zastosujemy do błądzenia po hiperkostce. Krótko opowiemy o jednym ze "skutków ubocznych", jakim jest pewna tożsamość algebraiczna, z której m.in. wynika nowy dowód na inną znaną tożsamość, a także nowa postać liczb Stirlinga drugiego rodzaju.

2022-10-27 (czwartek), 12:15 - 14:00

dr Michał Burdukiewicz (Autonomiczny Uniwersytet w Barcelonie/Uniwersytet Medyczny w Białymstoku)

Pułapki w analizie danych peptydowych

Streszczenie:
Peptydy to krótkie łańcuchy aminokwasowe, które pełnią wiele ważnych biologicznych funkcji (np. przeciwdrobnoustrojowe). Z tych względów badacze poszukują nowych peptydów o potencjalnie istotnych funkcjach, co jednak jest bardzo czaso- i kosztochłonne w warunkach laboratoryjnych. Dlatego też często stosuje się metody uczenia maszynowego, począwszy od modeli liniowych, po uczenie głębokie, które umożliwiają szybkie i tanie wykrywanie określonych grup peptydów w danych genomicznych i metagenomicznych. W mojej prezentacji pokazuję nie tylko proces tworzenia takich narzędzi, ale również problemy z tym powiązane takie jak brak odpowiednich danych (10.1093/nar/gkac882) oraz nierzetelne benchmarki (10.1093/bib/bbac343).

2022-10-20 (czwartek), 12:15 - 14:00

prof. Krzysztof Dębicki (Uniwersytet Wrocławski)

Prawdopodobieństwo symultanicznej ruiny w wielowymiarowym gaussowskim modelu ruiny

Streszczenie:
Zanalizujemy dokładną asymptotykę prawdopodobieństwa jednoczesnej ruiny skorelowanych procesów ryzyka modelowanych przez procesy gaussowskie o stacjonarnych przyrostach z liniowym dryfem. Przedstawione wyniki są owocem wspólnej pracy z Krzysztofem Bisewskim (Univ. of Lausanne) oraz Nikolaiem Kriukovem (Univ. of Lausanne).

2022-10-13 (czwartek), 12:15 - 14:00

prof. Tomasz Rolski (Uniwersytet Wrocławski)

H-pochodne od sup-funkcjonałów od ułamkowego ruchu Browna

Streszczenie:
We consider a family of sup-functionals of (drifted) fractional Brownian motion with Hurst parameter $H\in(0,1)$. This family includes, but is not limited to: expected value of the supremum \begin{align*} {\mathcal M}_H(T,a) := {\mathbf E}\Big(\sup_{t\in[0,T]} B_H(t) - at\Big), \end{align*} the Wills functional, and the Piterbarg-Pickands constant. Explicit formulas for the first derivative of these functionals as functions of Hurst parameter evaluated at $H=\tfrac{1}{2}$ are established.

2022-06-09 (czwartek), 12:15 - 14:00

Adam Kaszubowski (Uniwersytet Wrocławski)

Optimality of impulse control problem in refracted Lévy model with Parisian ruin and transaction costs

Streszczenie:
We will consider optimal dividend problem for a company, whose underlying process is modeled by the spectrally negative Lévy process. We will assume that after each payment there will be a transaction cost implied and as a result cumulative dividend process will be a pure jump process. Therefore, instead of the traditional barrier or refracted payment strategy, we will consider so-called impulse strategy. In addition, when the controlled risk process will be below zero there will be an additional drift imposed to save the process from falling into a Parisian-type ruin. This will imply that the controlled risk process will be driven by the refracted-type SDE. Our aim will be to concentrate on proving the optimality of the impulse strategy with the use of standard steps of the Verification Lemma. We will show how and when natural assumptions arise and how they are connected with the scale functions. The talk is based on the joint work with Irmina Czarna.

2022-06-02 (czwartek), 12:15 - 14:00

prof. Zbigniew J. Jurek (Uniwersytet Wrocławski)

Selfdecomposable variables, their background driving distributions(BDDF), log-gamma variables and some graphs

Streszczenie:
Selfdecomposable variables (distributions) or Lévy class L, arise as a natural generalization of the central limit theorem. It is a quite large class and includes many classical distributions such as stable, gamma, log-gamma, t-Student, logistic, stochastic area under planar Brownian motion, Bessel-K, Bessel densities, Fisher z-distribution, etc. All class L distributions admit the random integral representation - a random integral with respect to some Lévy process Y , called as background driving Lévy process, in short BDLP. Probability distribution of Y(1) is called background driving distribution, in short: BDDF. In the lecture we will present the formulas for BDDF (and for some variables) in a such way that might be more useful for a simulation.
References:
[1] zjj (2022) Theory Probab. Appl. vol. 67(1), pp. 105-117;
[2] zjj (2021) Mathematica Applicanda, vol. 49(2), pp. 85-109.

2022-05-26 (czwartek), 12:15 - 14:00

dr Klaudiusz Czudek (Uniwersytet Mikołaja Kopernika w Toruniu)

Central limit theorem for random circle rotations

Streszczenie:
I am going to talk about a Markov process arising when circle rotations are applied randomly. The central limit theorem for additive functionals of this random walk will be discussed. It depends on two factors: Diophantine properties of the angle of rotation and the regularity of an observable.

2022-05-19 (czwartek), 12:15 - 14:00

prof. Tomasz Rolski (Uniwersytet Wrocławski)

Pochdna funkcjonałów typu supremum dla ułamkowego ruchu Browna w H=1/2

Streszczenie:
We consider a family of sup-functionals of (drifted) fractional Brownian motion with Hurst parameter H. This family includes, but is not limited to: expected value of the supremum, expected workload, Wills functional, and Piterbarg-Pickands constant. Explicit formulas for the derivatives of these functionals as functions of Hurst parameter evaluated at H = 1/2 are established. In order to derive these formulas, we develop the concept of derivatives of fractional alpha-stable fields introduced by Stoev & Taqqu (2004) and propose Paley-Wiener-Zygmund representation of fractional Brownian motion. The talk is based on joint work with Krzysztof Bisewski and Krzysztof Debicki.

2022-05-05 (czwartek), 12:15 - 14:00

dr Piotr Dyszewski (Uniwersytet Wrocławski)

Branching random walks and point processes

Streszczenie:
We will investigate the convergence of a branching random walk from the viewpoint of random measures. We will show that the case of stretched exponential (Weibull) displacements provides a continuous transition between the domain of one big jump and its complement. The talk is based on a joint work with Nina Gantert (TUM).

2022-04-28 (czwartek), 12:15 - 14:00

prof. Krzysztof Dębicki (Uniwersytet Wrocławski)

Pochodna wartości oczekiwanej supremum ułamkowego ruchu Browna w H=1

Streszczenie:
Supremum S(T,H) ułamkowego ruchu Browna z parametrem Hursta H na odcinku [0,T] gra istotną rolę w wielu modelach probabilistycznych. Rozkład zmiennej losowej S(T,H) znany jest jedynie gdy H=1/2 lub H=1. W wykładzie skupimy się na własnościach pochodnej względem parametru H wartości oczekiwanej S(T,H) w H=1. Przedstawione wyniki oparte są na wspólnej pracy z Krzysztofem Bisewskim (University of Lausanne) i Tomaszem Rolskim.

2022-04-21 (czwartek), 12:15 - 14:00

dr Konrad Krystecki (Uniwersytet Wrocławski)

Componentwise Finite-Time Ruin In Two-Dimensional Brownian Risk Model

Streszczenie:
The aim of this dissertation is to study a particular finite-time risk model for the ruin probability of two insurance companies that partially share the same risk. The model assumes that the company’s cash flows are modelled by a random and a deterministic part. The accumulated claims are modelled by the Brownian motion and the deterministic premiums are modelled by the linear drift. The connection between the two companies is modeled through a constant correlation. In the first part the company is considered to be ruined if the cash flows of the company at any point in the given interval overcome the initial capital of the company. The thesis investigates the probability of both companies being ruined as their initial capitals are growing larger. In the subsequent parts we consider generalizations of the aforementioned notion of ruin. The new definition of ruin states that the ruin occurs only if the cash flows of the company are above the initial capital for a certain period of time, which is called time in red. We differentiate two cases – where we either count the time in red consecutively or cumulatively. The dissertation focuses on a particular length of the time that the cash flows spend above the initial capital, which is connected to the height of initial capital through a simple function. We prove that for that particular function we obtain results that are of the same order as the results from the first part. In the final chapter the thesis considers much more general cases of the time in red for the case of positively correlated companies.

2022-01-20 (czwartek), 12:15 - 14:00

dr Witold Świątkowski (Uniwersytet Wrocławski)

Norms of randomized circulant matrices

Streszczenie:
Opowiem o oszacowaniach norm macierzy losowych z niezależnymi współrzędnymi. Zacznę od zaprezentowania twierdzenia A. Bandeiry, R. Latały i R. van Handela, dającego obustronne oszacowanie normy, niezależne od wymiaru, w przypadku gaussowskim. Następnie zajmiemy się przypadkiem zero-jedynkowym. Pokażę, że zachodzi podobne oszacowanie dolne. Opowiem też, co już wiemy, a co chcielibyśmy wiedzieć o górnym oszacowaniu.

2022-01-13 (czwartek), 12:15 - 14:00

prof. Alexander Iksanov (Taras Shevchenko National University of Kyiv)

On the number of occupied boxes in an infinite occupancy scheme

Streszczenie:
I intend to provide an elementary introduction into an infinite balls-in-boxes scheme a.k.a. Karlin's occupancy scheme. Also, two generalizations of the scheme will be discussed. The core of the talk will be devoted to weak convergence of the number of occupied boxes. After presenting Dutko's (1989) criterion for the one-dimensional convergence I shall turn to more recent advances concerning weak convergence of finite-dimensional distributions. The talk should be accessible to a wide audience with some knowledge of basic Probability Theory.

2021-11-25 (czwartek), 12:15 - 14:00

dr Piotr Dyszewski (Uniwersytet Wrocławski)

Limit laws for depths and heights of random trees

Streszczenie:
We will revisit the random split-trees introduced by Devroye "Universal limit laws for depths in random trees." SIAM Journal on Computing 28, no. 2 (1998): 409-432, and show how one can use an embedding into a continuous setting to present a new treatment of the model. We will illustrate our approach by giving a new proof of the central limit theorem for the depth of a split-tree. Moreover we will give a new result in the form of a limit theorem for the height of a split-tree. The talk is based on a joint work in progress with C. Mailer (University of Bath).

2021-10-21 (czwartek), 12:15 - 14:00

prof. Krzysztof Dębicki (Uniwersytet Wrocławski)

Ekstrema pól gaussowskich o nieaddytywnej strukturze zależności

Streszczenie:
Zanallizujemy dokładną asymptotykę ogona rozkładu supremum dla klasy pól gaussowskich z niestandardową strukturą zależności. Wyniki zostaną zilustrowane dwoma przykładami:
- asymptotycznymi własnościami "performance table" i związanymi z nią zagadnieniami własności wartości własnych macierzy GUE;
- asymptotykami procesów "chi".
Wystąpienie oparte jest na wspólnej pracy z L. Bai (Nankai Univ.) and P.Liu (Univ. of Essex).

2021-06-17 (czwartek), 12:15 - 14:00

Pavel Levlev (Université de Lausanne)

Proportional Parisian Reinsurance with many-fBm inputs

Streszczenie:
Consider the proportional reinsurance process with two (or more) companies sharing one risk process, modeled by large number of independent fractional Brownian motions. There are recent results on classical, joint and “at least one” ruin for this process, whereas the Parisian ruin seems to have not been studied before. In the talk I shall address the exact first order asymptotics in this case, which is motivated by a recent paper “Proportional reinsurance for fractional Brownian risk model” by Krzysztof Kępczyński.

2021-06-10 (czwartek), 12:15 - 14:00

Nikolai Kriukov (Université de Lausanne)

Extensions of Korshunov inequality for multidimensional processes

Streszczenie:
This talk is focused on the generalization of Korshunov inequality, which is helpful in simplifying the proof of double sum negligibility in ruin problems. It provides a non-asymptotic upper bound for the classical ruin probability of Brownian motion, which turns out to be asymptotically precise. The presenting results extend this inequality for the case of hitting some specific set and non-centered processes. In particular, we discuss applications to k-th simultaneous ruin probabilities.

2021-05-20 (czwartek), 12:15 - 14:00

prof. Matthias Meiners (Justus-Liebig-Universität Gießen)

Fluctuations of Biggins' martingales at complex parameters

Streszczenie:
The long-term behavior of a supercritical branching random walk can be described and analyzed with the help of Biggins' martingales, parametrized by real or complex numbers.
If certain sufficient conditions for the convergence of the martingales to non-degenerate limits hold, there are three different regimes of fluctuations of Biggins' martingales around their limits. First, for parameters with small absolute values, the fluctuations are Gaussian and the limit laws are scale mixtures of the real or complex standard normal laws. Second, there is a region in the parameter space in which the martingale fluctuations are determined by the extremal positions in the branching random walk. Finally, there is a critical region (typically on the boundary of the set of parameters for which the martingales converge to a non-degenerate limit) where the fluctuations are stable-like and the limit laws are the laws of randomly stopped Lévy processes satisfying invariance properties similar to stability.
In my talk, I will present the fluctuations in all three regions in the special case of a branching random walk with binary splitting and independent Gaussian increments.

2021-05-06 (czwartek), 12:15 - 14:00

prof. Krzysztof Dębicki (Uniwersytet Wrocławski)

Czas pobytu pól losowych nad wysoką barierą

Streszczenie:
Dokonamy asymptotycznej analizy czasu przebywania pola losowego powyżej wysokiej bariery. Przy dość ogólnych założeniach pokażemy, że istnieje interesujący związek między asymptotykami ogona czasu przebywania powyżej bariery i supremum. Ogólną teorię zilustrujemy przykładami. Wystąpienie oparte jest na wspólnej pracy z E. Hashorvą, P. Liu oraz Z. Michną.

2021-04-22 (czwartek), 12:15 - 14:00

Grigori Jasnovidov (Université de Lausanne)

Ruin probability for Discrete and Continuous Gaussian Risk Models

Streszczenie:
In this presentation we focus on computation of the asymptotics of the ruin probabilities of Gaussian processes under the discrete time setup. We also study some properties of the Pickands constants appearing in the asymptotics.

2021-04-15 (czwartek), 12:15 - 14:00

dr Piotr Dyszewski (Technische Universität München)

The largest and smallest fragment in a k-regular self-similar fragmentation

Streszczenie:
We study the asymptotics of the $k$-regular self-similar fragmentation process. For $\alpha \geq 0$ and an integer $k\geq 2$, this is the Markov process $(I_t)_{t\geq 0}$ in which each $I_t$ is a union of open subsets of $[0,1)$, and independently each subinterval of $I_t$ of size $u$ breaks into $k$ equally sized pieces at rate $u^\alpha$. Let $k^{-m_t}$ and $k^{-M_t}$ be the respective sizes of the largest and smallest fragments in $I_t$. By relating $(I_t)_{\geq 0}$ to a branching random walk, we find that there exist explicit deterministic functions $g(t)$ and $h(t)$ such that $|m_t-g(t)|\leq 1$ and $|M_t-h(t)|\leq 1$ for all sufficiently large $t$. The talk is based on a joint work with Nina Gantert, Samuel G. G. Johnston, Joscha Prochno and Dominik Schmid.

2021-04-08 (czwartek), 12:15 - 14:00

dr Alexander Marynych (Taras Shevchenko National University of Kyiv)

Weak convergence of random geometric objects in non-Euclidean spaces

Streszczenie:
The analysis of conventional convex hulls of random points sampled from the uniform distribution on a compact convex subset of the d-dimensional Euclidean space is the classical topic in stochastic geometry. In the past years there has been a splash of activity around various generalized concepts of convexity both in geometric and probabilistic communities. The talk is devoted to the discussion of two particular models of this kind. In the first model we consider a sample picked from the uniform distribution on the upper semi-sphere and analyze its spherical convex hull. In the second model the sample is taken from the uniform distribution in a convex body K in the d-dimensional Euclidean space and we focus on the analysis of its K-convex hull, that is, intersection of all affine translates of K which contain the sample. Considered from an appropriate viewpoint, these two models incorporating generalized notion of convexity exhibit a similar behavior which turns out to be very different from such in the classical setting.

2021-04-01 (czwartek), 12:15 - 14:00

prof. Dariusz Buraczewski (Uniwersytet Wrocławski)

Gałązkowy spacer losowy

Streszczenie:
Podczas wykładu opowiem o gałązkowym spacerze losowym i przedstawię podstawowe własności dotyczące zachowania jego maksimum. W opisie tego procesu kluczową rolę odgrywa tzw. martyngał pochodny. Opowiem o nowych wynikach otrzymanych wspólnie z Aleksandrem Iksanovem (Kijów) oraz Bastienem Mallein (Paryż).

2021-03-25 (czwartek), 12:15 - 14:00

dr Ayan Bhattacharya (Indian Institute of Technology)

Extreme positions of regularly varying branching random walk in random environment

Streszczenie:
In this article, we consider a Branching Random Walk (BRW) on the real line where the underlying genealogical structure is given through a supercritical branching process in i.i.d. environment and satisfies Kesten-Stigum condition. The displacements coming from the same parent are assumed to have jointly regularly varying tails. Conditioned on the survival of the underlying genealogical tree, we prove that the appropriately normalized (depends on the expected size of the n-th generation given the environment) maximum among positions at the n-th generation converges weakly to a scale-mixture of Frechét random variable. Furthermore, we derive the weak limit of the extremal processes composed of appropriately scaled positions at the n-th generation and show that the limit point process is a member of the randomly scaled scale-decorated Poisson point processes (SScDPPP). Hence, an analog of the predictions by Brunet and Derrida (2011) holds. This is a joint work with Zbigniew Palmowski.

2021-03-18 (czwartek), 12:15 - 14:00

prof. Zbigniew Palmowski (Politechnika Wrocławska)

On the renewal theorem for maxima on trees

Streszczenie:
We consider the distributional fixed-point equation: \[R \stackrel{\mathcal{D}}{=} Q \vee \left( \bigvee_{i=1}^N C_i R_i \right), \] where the $\{R_i\}$ are i.i.d.~copies of $R$, independent of the vector $(Q, N, \{C_i\})$, where $N \in \mathbb{N}$, $Q, \{C_i\} \geq 0$ and $P(Q > 0) >0$. By setting $W = \log R$, $X_i = \log C_i$, $Y = \log Q$ it is equivalent to the high-order Lindley equation \[W \stackrel{\mathcal{D}}{=} \max\left\{ Y, \, \max_{1 \leq i \leq N} (X_i + W_i) \right\}.\] It is known that under Kesten assumptions, \[P(W > t) \sim H e^{-\alpha t}, \qquad t \to \infty,\] where $\alpha>0$ solves the Cram\'er-Lundberg equation $E \left[ \sum_{j=1}^N C_i ^\alpha \right] = E\left[ \sum_{i=1}^N e^{\alpha X_i} \right] = 1$. The main goal of this paper is to provide an explicit representation for $P(W > t)$, which can be directly connected to the underlying weighted branching process where $W$ is constructed and that can be used to construct unbiased and strongly efficient estimators for all $t$. Furthermore, we show how this new representation can be directly analyzed using Alsmeyer's Markov renewal theorem, yielding an alternative representation for the constant $H$. We provide numerical examples illustrating the use of this new algorithm. This is a joint work with Bojan Basrak, Michael Conroy and Mariana Olvera-Cravioto.

2021-03-11 (czwartek), 12:15 - 14:00

prof. Alexander Iksanov (Taras Shevchenko National University of Kyiv)

On nested occupancy scheme in random environment

Streszczenie:
A nested occupancy scheme in random environment is a generalization of the Karlin infinite balls-in-boxes occupancy scheme in random environment (with random probabilities). Unlike the Karlin scheme in which the collection of boxes is unique, there is a nested hierarchy of boxes, and the hitting probabilities of boxes are defined in terms of iterated fragmentation of a unit mass. We say that the boxes belong to the jth level provided that their hitting probabilities are given by the j-fold fragmentation. Assuming that the number of balls is n, we shall present functional limit theorems for the number of occupied boxes in the jth level in two different settings: 1) j is fixed; 2) $j=j(n)$ diverges to infinity and $j(n)=o((\log n)^{1/2})$ as n tends to infinity. The talk is based on recent joint works with D. Buraczewski, B. Dovgay, A. Gnedin, A.Marynych and I.Samoilenko.

2021-02-25 (czwartek), 12:15 - 14:00

dr Konrad Kolesko (Uniwersytet Wrocławski)

Twierdzenia graniczne dla procesów gałązkowych

Streszczenie:
Dla gałązkowego spaceru losowego $\{S(u)\}_{u \in \mathbb T} $ o przyrostach dodatnich oraz funkcji $\phi:[0,\infty) \mapsto \mathbb R$ definiujemy proces Crumpa-Mode’a-Jagersa $Z^\phi_t$ wzorem: $$Z^\phi_t:=\sum_{u\in\mathbb T}\phi(t-S(u)).$$ W swojej pracy O. Nerman (1981) udowodnił, że przy pewnych naturalnych założeniach istnieje parametr $\alpha>0$, taki że $$e^{-\alpha t} Z^\phi_t \stackrel{t\to\infty}{\longrightarrow} \int \phi(s)e^{-\alpha s}ds \cdot W\quad \text{p.n.}$$ dla pewnej zmiennej losowej $W$. Podczas wykładu zaprezentuję twierdzenia graniczne dla procesu $Z^\phi_t$. Przedstawione wyniki oparte są na wspólnej pracy z Matthiasem Meinersem oraz Aleksandrem Iksanovem.