Błażej Wróbel
Mathematical Institute
Plac Grunwaldzki 2/4
50-384 Wrocław
POLAND
Contact:
Office: 10.2
Phone: +48 71 37 57 401
E-mail: blazej.wrobel[at]math.uni.wroc.pl or blazej.wrobel[at]uwr.edu.pl
About me:
I am an associate professor at the Institute of Mathematics of the Polish Academy of Sciences and a full professor at the Mathematical Institute at the University of Wrocław.
I completed my PhD in Mathematics in 2014 via a co-tutelle agreement beetween the University of Wrocław and Scuola Normale Superiore, Pisa. My PhD thesis was entitled 'Multivariate Spectral Multipliers' and it is avaliable
here .
I obtained my
Habilitation degree from the University of Wrocław in June 2019.
I received the title of professor in May 2024.
The main area of my research is harmonic analysis. I am especially interested in high-dimensional phenomena that arise as the dimension tends to infinity. I am also interested in related aspects of operator theory, PDE, analytic number theory, and ergodic theory.
Education and employment:
- Full professor at the Mathematical Institute of the University of Wrocław, from 1.06.2024.
- Full professor conferred by the President of Poland, 15.05.2024.
- Associate professor (prof. IMPAN) in the Institute of Mathematics, Polish Academy of Sciences, from 10.2022.
- Associate professor (prof. UWr) in the Mathematical Institute of the University of Wrocław, from 3.2021.
- Habilitation in Mathematics from the University of Wrocław (18.06.2019)
- HCM Postdoctoral research fellow at the University of Bonn, (1.02.2016-28.02.2018).
- Postdoctoral research fellow at the University of Milan-Bicocca, (1.02.2015-31.01.2016).
- Assistant professor in the Mathematical Institute of University of Wrocław, from 10.2014.
- PhD in Mathematics from the University of Wrocław and Scuola Normale Superiore, Pisa (10.06.2014).
- M.Sc. in Mathematics from the Wrocław University of Technology, (1.06.2010).
Papers:
- K. Domelevo, P. Durcik, V. Fragkiadaki, O. Klein, D. Oliveira e Silva, L. Slavíková, B. Wróbel.
Dimension-free inequalities for low and high degree functions on the Hamming cube (arXiv)
- M. Kucharski, B. Wróbel, J. Zienkiewicz.
Dimension-free $L^p$ estimates for higher order maximal Riesz transforms in terms of the Riesz transforms (arXiv)
- B. Wróbel
Improved multiplier theorems on rank one noncompact symmetric spaces (arXiv)
- M. Kucharski and B. Wróbel.
On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators (arXiv)
- J. Mirek, W. Słomian, and B. Wróbel.
On the solution of Warring Problem with a multiplicative error term: dimension free estimates (final version, arXiv)
- M. Mirek, T. Z. Szarek, and B. Wróbel.
Dimension-free estimates for the discrete spherical maximal functions (final version, arXiv)
- M. Kucharski and B. Wróbel.
A dimension-free estimate on $L^2$ for the maximal Riesz transform in terms of the Riesz transform (final version, arXiv)
- D. Kosz, M. Mirek, P. Plewa, and B. Wróbel.
Some remarks on dimension-free estimates for the discrete Hardy-Littlewood maximal functions (final version, arXiv)
- S. Meda and B. Wróbel.
Marcinkiewicz-type multipliers on products of noncompact symmetric spaces (final version, arXiv)
- J. Bourgain, M. Mirek, E.M. Stein, and B. Wróbel.
On the Hardy-Littlewood maximal functions in high dimensions: Continuous and discrete perspective (final version, arXiv)
- J. Bourgain, M. Mirek, E.M. Stein, and B. Wróbel.
On discrete Hardy-Littlewood maximal functions over the balls in $Z^d$: dimension-free estimates (final version, arXiv)
- F. Ricci and B. Wróbel.
Spectral multipliers for functions of fixed $K$-type on $SL(2,\mathbb{R}).$ (final version, arXiv)
- J. Bourgain, M. Mirek, E.M. Stein, and B. Wróbel.
Dimension-free estimates for discrete Hardy-Littlewood averaging operators over the cubes in $\mathbb{Z}^d.$ (final version, arXiv)
- D. Celotto, S. Meda, and B. Wróbel.
$L^p$ spherical multipliers on homogenous trees.
(final version, arXiv)
- J. Bourgain, M. Mirek, E.M. Stein, and B. Wróbel.
On dimension-free variational inequalities for averaging operators in $\mathbb R^d$.
- B. Wróbel.
Approaching bilinear multipliers via a functional calculus.
- B. Wróbel.
Dimension-free $L^p$ estimates for vectors of Riesz transforms associated with orthogonal expansions.
- B. Wróbel.
On the consequences of a Mihlin-Hörmander functional calculus: square function and maximal function estimates.
- B. Wróbel.
Joint spectral multipliers for mixed systems of operators.
- J. Dziubański, B. Wróbel.
Strong continuity on Hardy spaces.
- B. Wróbel.
Multivariate spectral multipliers for the Dunkl transform and the Dunkl
harmonic oscillator.
- B. Wróbel.
Dimension free $L^p$ estimates for single Riesz transforms via an $H^{\infty}$ joint functional calculus.
- B. Wróbel.
Multivariate spectral multipliers for systems of Ornstein-Uhlenbeck operators.
- B. Wróbel.
Laplace type multipliers for Laguerre function expansions of Hermite type.
- J. Dziubański, M. Preisner, and B. Wróbel.
Multivariate Hörmander-type multiplier theorem for the Hankel transform.
- K. Stempak and B. Wróbel.
Dimension free $L^p$ estimates for Riesz transforms associated with Laguerre function expansions of Hermite type.
- B. Wróbel.
Multivariate spectral multipliers for tensor product orthogonal expansions.
- B. Wróbel.
On g-functions for Laguerre function expansions of Hermite type.
- B. Wróbel.
Imaginary powers of a Laguerre differential operator.