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The globally valued fields project (joint with E. Hrushovski)

The sum formula: a property of function and number fields

Vx € K* Y me - vo(x) =0,
w

Example

e K = Q and Q consists of all v, for prime p € Z, together with
Veo (X) = — log |x| (this last valuation is Archimedean).
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The sum formula: a property of function and number fields

Vx € K* Y M - vw(x) =0, or more generally, / Vo (x)dp(w) = 0.
= Q

Example

e K = Q and Q consists of all v, for prime p € Z, together with
Veo(x) = — log |x| (this last valuation is Archimedean).

o K = k(t), Q consists of all v, for prime p € k[t], together with
Veo (f) = —deg f.

o Global fields: number fields, function fields in one variable (finite
extensions of the previous examples).

@ Their algebraic closure. () is not discrete, measure essentially unique.

@ Function fields of higher-dimensional varieties. Can use intersection
numbers to give weight / measure to divisors — measure is not unique.
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Definition
A globally valued field is a field K together with a measured family of
valuations vi,: K — RU {0} such that [ vi,(x) =0 for all x # 0.

This is an inductive elementary class (first order, V3 axioms) in continuous
logic (and even slightly worse)

2017-07-04 3/ 19



Definition
A globally valued field is a field K together with a measured family of
valuations vi,: K — RU {0} such that [ vi,(x) =0 for all x # 0.

This is an inductive elementary class (first order, V3 axioms) in continuous
logic (and even slightly worse)

Motivation in studying this class

Render certain questions regarding number and function fields, heights, ...,
amenable to Model Theory.

2017-07-04 3/ 19



Definition
A globally valued field is a field K together with a measured family of
valuations vi,: K — RU {0} such that [ vi,(x) =0 for all x # 0.

This is an inductive elementary class (first order, V3 axioms) in continuous
logic (and even slightly worse)

Motivation in studying this class

Render certain questions regarding number and function fields, heights, ...,
amenable to Model Theory.

Also, because it is difficult and makes you do interesting maths.
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The big questions

The class of globally valued fields is elementary, with an V3 theory GVF. )

Question

© Does GVF has a model companion GVF*?
Is the class of e.c. models elementary?
How does one axiomatise “richness” in GVFs?

@ Is GVF* a model completion (does it have QE)?

Q Is GVF* stable?
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The big questions

The class of globally valued fields is elementary, with an V3 theory GVF. )

Question

© Does GVF has a model companion GVF*?
Is the class of e.c. models elementary?
How does one axiomatise “richness” in GVFs?
Hmmm....
@ Is GVF* a model completion (does it have QE)?
No. No amalgamation over an arbitrary GVF.
Q Is GVF* stable?
No obvious obstruction: the many valuations are coded in an L1 Banach
space, which is stable.

Two approaches for understanding GVFs and their extensions:

Udi A GVF is more or less a function field of a variety, together with some
global intersection-theoretic data.

Me At each valuation, a GVF is just a valued field, so working locally is easier.
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The local approach

Conjecture (2007)
GVF* is just GVF plus the fullness axiom: Vv, 3x... = IxVvy ... J

This axiom holds in every e.c. GVF, but does it suffice?
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The local approach

Conjecture (2007)
GVF* is just GVF plus the fullness axiom: Vv, 3x... = IxVvy ...

This axiom holds in every e.c. GVF, but does it suffice?

Conjecture (2017)

Vol (K[Wm, ") 5T Avey 1 .
mdm KW, ((+ Ddegw T O™ ) { = dim W

I. This really cool estimate holds, and  Il. it is useful.

Theorem (Spring 2016, assuming the estimate)

Let K be a GVF (non-trivial, alg. clsd, surjective, ...)
Then K is an amalgamation base (“weakly e.c.”) if and only if K is full.

Theorem (Autumn 2016)
The estimate holds.

v
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And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.
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And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.

Rules: choose A, solve for X

{T,F} is to R
as A is to X
Classical logic Continuous logic
v, 3 sup, inf
Equality Distance
Set Metric space (complete)
Topological spaces Topometric spaces
Compactness Compactness
Stability Stability
Algebraic geometry 77
Rigid analytic geometry? More algebraic?
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Analogy game, round two

Classical logic Continuous logic
Set Complete metric space
Algebraic geometry 77
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Analogy game, round two

Classical logic Continuous logic
Set Complete metric space
Algebraic geometry 77
Field Complete metric field: R, C or (K, v)
Ring = K[X]/1 K[X] modulo... something?
Definition

A sub-valuation on a ring A is a function u: A — RU {oo} s.t.:

o u(ab) > u(a) + u(b) (if =, then u is a valuation)
o u(a") = nu(a)

o u(a+ ) > minu(a), u(b)

° u(0) =

A valuation (sub-valuation) u: A — {0,00} = {T, F} is just a prime (radical)
ideal!
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Analogy game, round two

Classical logic Continuous logic
Set Complete metric space
Algebraic geometry 77
Field Complete metric field: R, C or (K, v)
Ring = K[X]/1 K[X] with a sub-valuation
Integral domain K[X] with a valuation
Definition

A sub-valuation on a ring A is a function u: A — RU {oo} s.t.:

o u(ab) > u(a) + u(b) (if =, then u is a valuation)
o u(a") = nu(a)
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Examples for round two

Theorem (B. '14)

Like ACF, the theory ACMVF of algebraically closed metric valued fields, in
continuous logic, has QE and is stable.
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Like ACF, the theory ACMVF of algebraically closed metric valued fields, in
continuous logic, has QE and is stable.

Definition
Say K is a valued field. A valuation on a K-vector space E is a function
ug: E— RU {oo} s.t.:

o up(ax) > vi(a) + ug(x)

o ug(a+b) > minug(a), ug(b)
The tensor product valuation on E ® F is the least valuation such that
(ue ® up)(x ®y) = ue(x) + up(y).
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Examples for round two

Theorem (B. '14)

Like ACF, the theory ACMVF of algebraically closed metric valued fields, in
continuous logic, has QE and is stable.

Definition
Say K is a valued field. A valuation on a K-vector space E is a function
ug: E— RU {oo} s.t.:

o up(ax) > vi(a) + ug(x)

o ug(a+b) > minug(a), ug(b)
The tensor product valuation on E ® F is the least valuation such that
(ue ® up)(x ®y) = ue(x) + up(y).

If K C L, M are algebraically closed, then L ® x M is an integral domain.

Theorem (Poineau '13, B. '15)

If K C L, M are algebraically closed valued fields, then vi ® vy (as K-vector
spaces) is a valuation on the ring L @k M (i.e., “‘prime”). ~» independence.
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Analogy game, round three

Radical ideal Sub-valuation
7
Zariski-closed W m
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Analogy game, round three

Radical ideal Sub-valuation

Zariski-closed W (W, n), with 1 a virtual divisor

Definition
Let u be a [homogeneous, almost finitely generated] sub-valuation on
K[X] = K[Xo, ..., Xu).

keru = {P : u(P) = oo} W = V(keru) C P"

u* (&) = inf M — (%) {C =[x]ew

homog. P deg P

U(x) = min; v(x;)

Such a function 7 = v*: W — R is a virtual divisor on W.

Theorem (“Valued Nullstellensatz")

Bijection u <— (W, u*). Converse duality: 1 = u* <= u = 7*.
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But why “virtual divisor"?

Lemma
Let (L,v) D (K,v). Let f € L[X]m (homog. of degree m) have no zeros on
P(K). Then

1@ = 10) = (£ (x) (e=wero)

is a virtual divisor, and every virtual divisor is a uniform limit of such.
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But why “virtual divisor"?

Lemma

Let (L,v) D (K,v). Let f € L[X]m (homog. of degree m) have no zeros on
P(K). Then

10 =10 ="5P o (e=wepr))

is a virtual divisor, and every virtual divisor is a uniform limit of such.

@ In other words, a virtual divisor is the “echo” of an actual divisor from a
larger model.

@ In model theoretic terms, it is an externally definable (R-valued) predicate.
o By stability, a virtual divisor is a definable predicate.
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Virtual divisors have concrete intersection.

Fact (Resultant)

There exists an irreducible polynomial € over Z which takes the coefficients of
n+ 1 homogeneous polynomials in n+ 1 unknowns, and vanishes if and only if
they have a common zero in P". Let us write

fo A Ay =C(for....F).

Proposition

Fori=0,...,n assume that:
e L;/K is an extension.
o f;i € Li[X]g4, (homogeneous of degree d;).
° 1= % is a virtual divisor.

Then, in the free amalgam Frac(Lo ®k -+ ®k Lp):

WARRRAY/

depends only on the 1; (i.e., on the traces of the f; on K).

v
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o Zariski-closed W C P" ~ a pair (W, 7).
7 is a virtual divisor, i.e., the trace on W of a polynomial with external
coefficients (f € L[X]g).

o Assume for simplicity that W = P". Then to 1 we associate
v(resultant of independent copies of )

17/\n+1:,7/\.../\;7: gl c R.

@ On the other hand, # contains the same information as a sub-valuation
u=15* on K[X]. How do we recover ™1 from u?
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The of a valued vector space

Definition (“volume = determinant”)

Let E be a valued K-vector space, x = (xg, ..., xxk_1) a basis.
x/ =xg N\ AXg_1 = Z SgN 0 * X7 (0) ®"'®X{7(k71) € E®k,
eSS,

voly(E, ug) = u?k(x/\).

Theorem
Let 17 be a virtual divisor on P", and 1* the dual valuation on K[X]. Then:
volgy,, ( K[X]m, 17*) p/ntt

_ -1
mdm KX~ g1 oM

where M, denotes the set of monomials of degree m.
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Proof of the estimate

Say 11 = rA’[K, where f € L[X]y. Take a Morley sequence (many independent
copies) f; € L;[X]q4.
o K[X]m admits a basis ® = (¢¢), where each ¢z is mostly a product of fis

volg (K[x]m)

mdim K[ X]m O(m™).
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Proof of the estimate

Say 17 = f |, where f € L[X]4. Take a Morley sequence (many independent
copies) f; € L;[X]q4.
o K[X]m admits a basis ® = (¢¢), where each ¢ is mostly a product of f;s

volg (K[X],,,)

mdm KX~ O

o Change of basis:
" = det® - M), volg (E, ug) = volgy,, (E, ug) + v(det ).

o By a “generalised Vandermonde matrix identity™:

v(detd) (r:ﬁf)v(fo Ao Nfp) +0(m") /el o(m

n

o Therefore:

volgny,, ( K[X]m, 1" An+1
.( ) =1 +0(m™1).
mdim K[X]m n+1
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Back to the global setting

volon g (K[X],,,,i]*) Am+1

Locally: mdm KX, = T T o(m™1).
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mdimK[X]m ntl +0(m™1).

Locally:

Globally: Let K be a GVF. At each valuation v, let #,, be a virtual divisor and
1%, the dual sub-valuation on K[X]. Integrating both sides:

vol( K[X]m, 1* An+1
(_ ) :_11 +O(m71).
mdim K[X]m n+1

(Since K is a GVF, volume is independent of basis)

2017-07-04 15 / 19



Back to the global setting

volon g (K[X]mJ]*> Am+1

mdimK[X]m ntl +0(m™1).

Locally:

Globally: Let K be a GVF. At each valuation v, let #,, be a virtual divisor and
1%, the dual sub-valuation on K[X]. Integrating both sides:

vol( K[X]m, 1* An+1
(_ ) :_11 +O(m71).
mdim K[X]m n+1

(Since K is a GVF, volume is independent of basis)
Which is the special case (W = P") of:

Theorem

vol (K[ W]m, ") AL+
o 71] /\VQ:W -1 o
mdm KWl ((+1)degw T O™ ) {g_d'mW
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Full GVFs

Theorem (K GVF, 1 = (1 : w € Q) virtual divisors on W)

voI(K[W]m,tj*) AL+
_ n AN VEW 1 o
mdm KWl ((+1)degw T O ) {g_d'mW

Definition

Say that a GVF K is full if it is (non-trivial, algebraically closed, surjective) and
for every valued vector space (E, u):

(v8>o) (aer\{o}) /mpwf&

Corollary (K full GVF, ## = (1 : w € Q) virtual divisors on W)

With earlier hypotheses, there exists W' C W of dimension ¢ — 1 such that

ML AVvEw M AVEw
((+1)degW — {degW’

v

2017-07-04 16 / 19
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Theorem (K GVF, 1 = (1 : w € Q) virtual divisors on W)

voI(K[W]m,tj*) AL+
__n A vy = L
mdm KWl ((+1)degw T O ) {g_d'mW

Definition

Say that a GVF K is full if it is (non-trivial, algebraically closed, surjective) and
for every valued vector space (E, u):

(v8>o) (aer\{o}) /mpwf&

Corollary (K full GVF, ## = (1 : w € Q) virtual divisors on W)

With earlier hypotheses, there exists W' C W of dimension ¢ — 1 such that

Al+1 AL
11 /\VCW 11 /\VQ:W/ / ,
< <<
(4D degW = fdegw’ TES S [u@+e, few

v
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Amalgamation over a full GVF

Corollary (Full GVFs are linearly e.c.)

Let K be a full GVF, E = (E,u) a valued vector space. Let L O K be a larger
GVF, E; = (E®k Lu®vy). If there exists x € E; such that [u;(x) >0
then such x already exists in E.

Corollary

Let K be a full GVF, Ly and Ly two GVF extensions. Then both embed over K
in some larger GVF M.

v

Proof.

By the Corollary, on L; ® Ly, the valuation vi, ® v, is sub-global:

Vx #0 /(le ®v,)(x) <0.

This we know how to correct to get = 0. O
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Proof of the first corollary

Fullness together with the estimate yields a g € K[W|p, such that (up to small
error):

1" (g) LA veEy

>
m — ({+1)degW
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Proof of the first corollary

Fullness together with the estimate yields a g € K[W|p, such that (up to small

error):
7(g) . 1" Avew
m — ({+1)degW
So for all x:
Vog(x) _ . - _,1/\[+1/\VQ:W
m 1(Ix) —(x) = (£+1)deg W
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Proof of the first corollary

Fullness together with the estimate yields a g € K[W|p, such that (up to small

error):
7(g) . 1" Avew
m — ({+1)degW
So for all x:
v o g(X) . ,1/\[-‘1-1 A VQ:W
e\ _ >
m 1) —9(x) 2 (£+1)deg W

This holds in particular for “x € g A vEy™:

M AvgAvEy NI AVEy - 7ML A Ve

mdeg W deg W ~ (L+1)degW
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Proof of the first corollary

Fullness together with the estimate yields a g € K[W|p, such that (up to small

error):
7(g) . 1" Avew
m — ({+1)degW
So for all x:
v o g(X) . ,1/\[-‘1-1 A VQ:W
e\ _ >_4 TEW
m 1) —9(x) 2 (£+1)deg W

This holds in particular for “x € g A vEy™:

M AvgAvEy NI AVEy - 7ML A Ve

mdeg W deg W ~ (L+1)degW

When (U;) are the components of W N V(g) (with nultiplicity):

MAavgAvey LM Aavey _ ML Avey

ImdegW  ImYdegUs ~— (£+1)degW

We obtain that one of the U; is as desired.
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Thank you
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