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The globally valued �elds project (joint with E. Hrushovski)

The sum formula: a property of function and number �elds

∀x ∈ K× ∑
ω
mω · vω(x) = 0, or more generally,

∫
Ω
vω(x)dµ(ω) = 0.

Example

K = Q and Ω consists of all vp for prime p ∈ Z, together with
v∞(x) = − log |x | (this last valuation is Archimedean).

K = k(t), Ω consists of all vp for prime p ∈ k [t], together with
v∞(f ) = − deg f .

Global �elds: number �elds, function �elds in one variable (�nite
extensions of the previous examples).

Their algebraic closure. Ω is not discrete, measure essentially unique.

Function �elds of higher-dimensional varieties. Can use intersection
numbers to give weight / measure to divisors � measure is not unique.
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De�nition

A globally valued �eld is a �eld K together with a measured family of
valuations vω : K → R∪ {∞} such that

∫
vω(x) = 0 for all x 6= 0.

This is an inductive elementary class (�rst order, ∀∃ axioms) in continuous
logic (and even slightly worse)

Motivation in studying this class

Render certain questions regarding number and function �elds, heights, . . . ,
amenable to Model Theory.

Also, because it is di�cult and makes you do interesting maths.
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The big questions

The class of globally valued �elds is elementary, with an ∀∃ theory GVF .

Question

1 Does GVF has a model companion GVF ∗?
Is the class of e.c. models elementary?
How does one axiomatise �richness� in GVFs?
Hmmm....

2 Is GVF ∗ a model completion (does it have QE)?
No. No amalgamation over an arbitrary GVF.

3 Is GVF ∗ stable?
No obvious obstruction: the many valuations are coded in an L1 Banach
space, which is stable.

Two approaches for understanding GVFs and their extensions:

Udi A GVF is more or less a function �eld of a variety, together with some
global intersection-theoretic data.

Me At each valuation, a GVF is just a valued �eld, so working locally is easier.
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The local approach

Conjecture (200?)

GVF ∗ is just GVF plus the fullness axiom: ∀vω∃x . . .→ ∃x∀vω . . .

This axiom holds in every e.c. GVF, but does it su�ce?

Conjecture (201?)

vol
(
K [W ]m, η∗

)
m dimK [W ]m

= − η∧`+1 ∧ vCW
(`+ 1) degW

+O(m−1)
{
` = dimW

I. This really cool estimate holds, and II. it is useful.

Theorem (Spring 2016, assuming the estimate)

Let K be a GVF (non-trivial, alg. clsd, surjective, ...)
Then K is an amalgamation base (�weakly e.c.�) if and only if K is full.

Theorem (Autumn 2016)

The estimate holds.
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And now to something completely di�erent

Enough of that. Instead, let us play my favourite analogy game.

Rules: choose A, solve for X

{T ,F} is to R

as A is to X

Classical logic Continuous logic

∀, ∃ sup, inf
Equality Distance

Set Metric space (complete)
Topological spaces Topometric spaces

Compactness Compactness
Stability Stability

Algebraic geometry ???
Rigid analytic geometry? More algebraic?
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Analogy game, round two

Classical logic Continuous logic
Set Complete metric space

Algebraic geometry ???

Field Complete metric �eld: R, C or (K , v)
Ring = K [X ]/I
Integral domain K [X ] with a valuation

De�nition

A sub-valuation on a ring A is a function u : A→ R∪ {∞} s.t.:
u(ab) ≥ u(a) + u(b) (if =, then u is a valuation)

u(an) = nu(a)

u(a+ b) ≥ min u(a), u(b)

u(0) = ∞

A valuation (sub-valuation) u : A→ {0,∞} = {T ,F} is just a prime (radical)
ideal!
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Examples for round two

Theorem (B. '14)

Like ACF , the theory ACMVF of algebraically closed metric valued �elds, in
continuous logic, has QE and is stable.

De�nition

Say K is a valued �eld. A valuation on a K -vector space E is a function
uE : E → R∪ {∞} s.t.:

uE (ax) ≥ vK (a) + uE (x)

uE (a+ b) ≥ min uE (a), uE (b)

The tensor product valuation on E ⊗K F is the least valuation such that
(uE ⊗ uF )(x ⊗ y) = uE (x) + uF (y).

If K ⊆ L,M are algebraically closed, then L⊗K M is an integral domain.

Theorem (Poineau '13, B. '15)

If K ⊆ L,M are algebraically closed valued �elds, then vL ⊗ vM (as K-vector
spaces) is a valuation on the ring L⊗K M (i.e., �prime�).  independence.
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Analogy game, round three

Radical ideal Sub-valuation
l l

Zariski-closed W ???

De�nition

Let u be a [homogeneous, almost �nitely generated] sub-valuation on
K [X ] = K [X0, . . . ,Xn].

ker u = {P : u(P) = ∞} W = V (ker u) ⊆ Pn

u∗(ξ) = inf
homog. P

v
(
P(x)

)
− u(P) − v̂(x)

{
ξ = [x ] ∈W

v̂(x) = mini v(xi )

Such a function η = u∗ : W → R is a virtual divisor on W .

Theorem (�Valued Nullstellensatz�)

Bijection u ←→ (W , u∗). Converse duality: η = u∗ ⇐⇒ u = η∗.
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But why �virtual divisor�?

Lemma

Let (L, v) ⊇ (K , v). Let f ∈ L[X ]m (homog. of degree m) have no zeros on
P(K ). Then

η(ξ) = f̂ (ξ) = v
(
f (x)

)
− v̂(x)

(
ξ = [x ] ∈ Pn(K )

)
is a virtual divisor, and every virtual divisor is a uniform limit of such.

In other words, a virtual divisor is the �echo� of an actual divisor from a
larger model.

In model theoretic terms, it is an externally de�nable (R-valued) predicate.

By stability, a virtual divisor is a de�nable predicate.
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Virtual divisors have concrete intersection.

Fact (Resultant)

There exists an irreducible polynomial C over Z which takes the coe�cients of
n+ 1 homogeneous polynomials in n+ 1 unknowns, and vanishes if and only if
they have a common zero in Pn. Let us write

f0 ∧ · · · ∧ fn = C(f0, . . . , fn).

Proposition

For i = 0, . . . , n assume that:

Li/K is an extension.

fi ∈ Li [X ]di (homogeneous of degree di ).

ηi = f̂i is a virtual divisor.

Then, in the free amalgam Frac(L0 ⊗K · · · ⊗K Ln):

η0 ∧ · · · ∧ ηn :=
v(f0 ∧ · · · ∧ fn)

d0 · · · dn
∈ R.

depends only on the ηi (i.e., on the traces of the fi on K).
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Let us sum up

Zariski-closed W ⊆ Pn  a pair (W , η).
η is a virtual divisor, i.e., the trace on W of a polynomial with external
coe�cients (f ∈ L[X ]d ).

Assume for simplicity that W = Pn. Then to η we associate

η∧n+1 = η ∧ · · · ∧ η =
v(resultant of independent copies of f )

dn+1
∈ R.

On the other hand, η contains the same information as a sub-valuation
u = η∗ on K [X ]. How do we recover η∧n+1 from u?
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The volume of a valued vector space

De�nition (�volume = determinant�)

Let E be a valued K -vector space, x = (x0, . . . , xk−1) a basis.

x∧ = x0 ∧ · · · ∧ xk−1 = ∑
σ∈Sk

sgn σ · xσ(0) ⊗ · · · ⊗ xσ(k−1) ∈ E⊗k ,

volx(E , uE ) = u⊗k
E

(x∧).

Theorem

Let η be a virtual divisor on Pn, and η∗ the dual valuation on K [X ]. Then:

volMm

(
K [X ]m, η∗

)
m dimK [X ]m

= − η∧n+1

n+ 1
+O(m−1),

where Mm denotes the set of monomials of degree m.
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Proof of the estimate

Say η = f̂ �K , where f ∈ L[X ]d . Take a Morley sequence (many independent
copies) fi ∈ Li [X ]d .

K [X ]m admits a basis Φ = (ϕξ), where each ϕξ is mostly a product of fi s

volΦ

(
K [X ]m

)
m dimK [X ]m

= O(m−1).

Change of basis:

Φ∧ = detΦ ·M∧m, volΦ(E , uE ) = volMm
(E , uE ) + v(detΦ).

By a �generalised Vandermonde matrix identity�:

v(detΦ) =

(
m/d
n+ 1

)
v(f0 ∧ · · · ∧ fn) +O(mn) =

η∧n+1

n+ 1
+O(m−1)

Therefore:

volMm

(
K [X ]m, η∗

)
m dimK [X ]m

= − η∧n+1

n+ 1
+O(m−1).
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Back to the global setting

Locally:
volMm

(
K [X ]m ,η∗

)
m dimK [X ]m

= − η∧n+1

n+1 +O(m−1).

Globally: Let K be a GVF. At each valuation vω let ηω be a virtual divisor and
η∗ω the dual sub-valuation on K [X ]. Integrating both sides:

vol
(
K [X ]m, η∗

)
m dimK [X ]m

= −η∧n+1

n+ 1
+O(m−1).

(Since K is a GVF, volume is independent of basis)
Which is the special case (W = Pn) of:

Theorem

vol
(
K [W ]m, η∗

)
m dimK [W ]m

= − η∧`+1 ∧ vCW
(`+ 1) degW

+O(m−1)
{
` = dimW
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Full GVFs

Theorem (K GVF, η = (ηω : ω ∈ Ω) virtual divisors on W )

vol
(
K [W ]m, η∗

)
m dimK [W ]m

= − η∧`+1 ∧ vCW
(`+ 1) degW

+O(m−1)
{
` = dimW

De�nition

Say that a GVF K is full if it is (non-trivial, algebraically closed, surjective) and
for every valued vector space (E , u):(

∀ε > 0
) (

∃x ∈ E r {0}
) ∫

u(x) >
vol(E , u)

dimE
− ε.

Corollary (K full GVF, η = (ηω : ω ∈ Ω) virtual divisors on W )

With earlier hypotheses, there exists W ′ ⊆W of dimension `− 1 such that

η∧`+1 ∧ vCW
(`+ 1) degW

≤ η∧` ∧ vCW ′

` degW ′
+ ε ≤ · · · ≤

∫
η(ξ) + ε′, ξ ∈W
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Amalgamation over a full GVF

Corollary (Full GVFs are linearly e.c.)

Let K be a full GVF, E = (E , u) a valued vector space. Let L ⊇ K be a larger
GVF, EL = (E ⊗K L, u⊗ vL). If there exists x ∈ EL such that

∫
uL(x) > 0

then such x already exists in E.

Corollary

Let K be a full GVF, L1 and L2 two GVF extensions. Then both embed over K
in some larger GVF M.

Proof.

By the Corollary, on L1 ⊗K L2, the valuation vL1 ⊗ vL2 is sub-global:

∀x 6= 0
∫
(vL1 ⊗ vL2 )(x) ≤ 0.

This we know how to correct to get = 0.
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Proof of the �rst corollary

Fullness together with the estimate yields a g ∈ K [W ]m such that (up to small
error):

η∗(g)
m

≥ − η∧`+1 ∧ vCW
(`+ 1) degW

So for all x :

v ◦ g(x)
m

− η
(
[x ]
)
− v̂(x) ≥ − η∧`+1 ∧ vCW

(`+ 1) degW

This holds in particular for �x ∈ η∧` ∧ vCW �:

η∧` ∧ vg ∧ vCW
m degW

− η∧`+1 ∧ vCW
degW

≥ − η∧`+1 ∧ vCW
(`+ 1) degW

When (Ui ) are the components of W ∩ V (g) (with nultiplicity):

η∧` ∧ vg ∧ vCW
`m degW

=
∑ η∧` ∧ vCUi

`m ∑ degUs
≥ η∧`+1 ∧ vCW

(`+ 1) degW

We obtain that one of the Ui is as desired.
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Thank you
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