Amalgamation in full globally valued fields

Itaï Ben Yaacov

Université Claude Bernard Lyon 1

Institut Camille Jordan

2017-07-04

A talk which has nothing (much) to do with amalgamation in full globally valued fields

Itaï Ben Yaacov

Université Claude Bernard Lyon 1 [

Institut Camille Jordan

2017-07-04

The globally valued fields project (joint with E. Hrushovski)

The sum formula: a property of function and number fields

$$
\forall x \in K^{\times} \quad \sum_{\omega} m_{\omega} \cdot v_{\omega}(x)=0, \quad \text { or more generally, }
$$

Example

- $K=\mathbf{Q}$ and Ω consists of all v_{p} for prime $p \in \mathbf{Z}$, together with $v_{\infty}(x)=-\log |x|$ (this last valuation is Archimedean).
- $K=k(t), \Omega$ consists of all v_{p} for prime $p \in k[t]$, together with $v_{\infty}(f)=-\operatorname{deg} f$.
- Global fields: number fields, function fields in one variable (finite extensions of the previous examples).
- Their algebraic closure. Ω is not discrete, measure essentially unique.
- Function fields of higher-dimensional varieties. Can use intersection numbers to give weight / measure to divisors - measure is not unique.

The globally valued fields project (joint with E. Hrushovski)

The sum formula: a property of function and number fields

$$
\forall x \in K^{\times} \quad \sum_{\omega} m_{\omega} \cdot v_{\omega}(x)=0
$$

Example

- $K=\mathbf{Q}$ and Ω consists of all v_{p} for prime $p \in \mathbf{Z}$, together with $v_{\infty}(x)=-\log |x|$ (this last valuation is Archimedean).
- $K=k(t), \Omega$ consists of all v_{p} for prime $p \in k[t]$, together with $v_{\infty}(f)=-\operatorname{deg} f$.
- Global fields: number fields, function fields in one variable (finite extensions of the previous examples).
- Their algebraic closure. Ω is not discrete, measure essentially unique.
- Function fields of higher-dimensional varieties. Can use intersection numbers to give weight / measure to divisors - measure is not unique.

The sum formula: a property of function and number fields

$$
\forall x \in K^{\times} \quad \sum_{\omega} m_{\omega} \cdot v_{\omega}(x)=0,
$$

Example

- $K=\mathbf{Q}$ and Ω consists of all v_{p} for prime $p \in \mathbf{Z}$, together with $v_{\infty}(x)=-\log |x|$ (this last valuation is Archimedean).
- $K=k(t), \Omega$ consists of all v_{p} for prime $p \in k[t]$, together with $v_{\infty}(f)=-\operatorname{deg} f$.
- Global fields: number fields, function fields in one variable (finite extensions of the previous examples).
- Their algebraic closure. Ω is not discrete, measure essentially unique.
- Function fields of higher-dimensional varieties. Can use intersection numbers to give weight / measure to divisors - measure is not unique.

The sum formula: a property of function and number fields

$$
\forall x \in K^{\times} \quad \sum_{\omega} m_{\omega} \cdot v_{\omega}(x)=0, \quad \text { or more generally, } \quad \int_{\Omega} v_{\omega}(x) d \mu(\omega)=0 .
$$

Example

- $K=\mathbf{Q}$ and Ω consists of all v_{p} for prime $p \in \mathbf{Z}$, together with $v_{\infty}(x)=-\log |x|$ (this last valuation is Archimedean).
- $K=k(t), \Omega$ consists of all v_{p} for prime $p \in k[t]$, together with $v_{\infty}(f)=-\operatorname{deg} f$.
- Global fields: number fields, function fields in one variable (finite extensions of the previous examples).
- Their algebraic closure. Ω is not discrete, measure essentially unique.
- Function fields of higher-dimensional varieties. Can use intersection numbers to give weight / measure to divisors - measure is not unique.

The sum formula: a property of function and number fields

$$
\forall x \in K^{\times} \quad \sum_{\omega} m_{\omega} \cdot v_{\omega}(x)=0, \quad \text { or more generally, } \quad \int_{\Omega} v_{\omega}(x) d \mu(\omega)=0 .
$$

Example

- $K=\mathbf{Q}$ and Ω consists of all v_{p} for prime $p \in \mathbf{Z}$, together with $v_{\infty}(x)=-\log |x|$ (this last valuation is Archimedean).
- $K=k(t), \Omega$ consists of all v_{p} for prime $p \in k[t]$, together with $v_{\infty}(f)=-\operatorname{deg} f$.
- Global fields: number fields, function fields in one variable (finite extensions of the previous examples).
- Their algebraic closure. Ω is not discrete, measure essentially unique.
- Function fields of higher-dimensional varieties. Can use intersection numbers to give weight / measure to divisors - measure is not unique.

Definition

A globally valued field is a field K together with a measured family of valuations $v_{\omega}: K \rightarrow \mathbf{R} \cup\{\infty\}$ such that $\int v_{\omega}(x)=0$ for all $x \neq 0$.

This is an inductive elementary class (first order, $\forall \exists$ axioms) in continuous logic (and even slightly worse)

> Motivation in studying this class
> Render certain questions regarding number and function fields, heights, amenable to Model Theory.

Also, because it is difficult and makes you do interesting maths.

Definition

A globally valued field is a field K together with a measured family of valuations $v_{\omega}: K \rightarrow \mathbf{R} \cup\{\infty\}$ such that $\int v_{\omega}(x)=0$ for all $x \neq 0$.

This is an inductive elementary class (first order, $\forall \exists$ axioms) in continuous logic (and even slightly worse)

Motivation in studying this class
Render certain questions regarding number and function fields, heights, ..., amenable to Model Theory.

Also, because it is difficult and makes you do interesting maths.

Definition

A globally valued field is a field K together with a measured family of valuations $v_{\omega}: K \rightarrow \mathbf{R} \cup\{\infty\}$ such that $\int v_{\omega}(x)=0$ for all $x \neq 0$.

This is an inductive elementary class (first order, $\forall \exists$ axioms) in continuous logic (and even slightly worse)

Motivation in studying this class

Render certain questions regarding number and function fields, heights, ..., amenable to Model Theory.

Also, because it is difficult and makes you do interesting maths.

The class of globally valued fields is elementary, with an $\forall \exists$ theory GVF.

Question

- Does GVF has a model companion GVF*?

Is the class of e.c. models elementary? How does one axiomatise "richness" in GVFs?
Hmmm
(2) Is $G V F^{*}$ a model completion (does it have QE)?
(3) Is GVF* stable?

No obvious obstruction: the many valuations are coded in an L^{1} Banach space, which is stable.

Two approaches for understanding GVFs and their extensions: A GVF is more or less a function field of a variety, together with some global intersection-theoretic data. At each valuation, a GVF is just a valued field, so working locally is easier

The big questions

The class of globally valued fields is elementary, with an $\forall \exists$ theory GVF.

Question

(1) Does GVF has a model companion GVF*?

Is the class of e.c. models elementary? How does one axiomatise "richness" in GVFs?
Hmmm
(2) Is $G V F^{*}$ a model completion (does it have QE)?

No. No amalgamation over an arbitrary GVF.
(3) Is GVF* stable?

No obvious obstruction: the many valuations are coded in an L^{1} Banach space, which is stable.

Two approaches for understanding GVFs and their extensions:
A GVF is more or less a function field of a variety, together with some
global intersection-theoretic data.
At each valuation, a GVF is just a valued field, so working locally is easier

The big questions

The class of globally valued fields is elementary, with an $\forall \exists$ theory GVF.

Question

(1) Does GVF has a model companion GVF*?

Is the class of e.c. models elementary? How does one axiomatise "richness" in GVFs?
Hmmm
(2) Is $G V F^{*}$ a model completion (does it have QE)?

No. No amalgamation over an arbitrary GVF.
(3) Is GVF* stable?

No obvious obstruction: the many valuations are coded in an L^{1} Banach space, which is stable.

Two approaches for understanding GVFs and their extensions:
A GVF is more or less a function field of a variety, together with some
global intersection-theoretic data.
At each valuation, a GVF is just a valued field, so working locally is easier

The big questions

The class of globally valued fields is elementary, with an $\forall \exists$ theory GVF.

Question

(1) Does GVF has a model companion GVF*?

Is the class of e.c. models elementary? How does one axiomatise "richness" in GVFs? Hmmm....
(2) Is $G V F^{*}$ a model completion (does it have QE)? No. No amalgamation over an arbitrary GVF.
(3) Is GVF* stable?

No obvious obstruction: the many valuations are coded in an L^{1} Banach space, which is stable.

Two approaches for understanding GVFs and their extensions: A GVF is more or less a function field of a variety, together with some global intersection-theoretic data. At each valuation, a GVF is just a valued field, so working locally is easier

The class of globally valued fields is elementary, with an $\forall \exists$ theory GVF.

Question

(1) Does GVF has a model companion GVF*?

Is the class of e.c. models elementary? How does one axiomatise "richness" in GVFs? Hmmm....
(2) Is GVF* a model completion (does it have QE)? No. No amalgamation over an arbitrary GVF.
(3) Is GVF* stable?

No obvious obstruction: the many valuations are coded in an L^{1} Banach space, which is stable.

Two approaches for understanding GVFs and their extensions:
Udi A GVF is more or less a function field of a variety, together with some global intersection-theoretic data.
Me At each valuation, a GVF is just a valued field, so working locally is easier.

Conjecture (200?)
GVF* is just GVF plus the fullness axiom: $\forall v_{\omega} \exists x \ldots \rightarrow \exists x \forall v_{\omega} \ldots$
This axiom holds in every e.c. GVF, but does it suffice?

```
Conjecture (201?)
```



```
I. This really cool estimate holds, and II. it is useful.
Theorem (Spring 2016, assuming the estimate)
Let K be a GVF (non-trivial, alg. clsd, surjective, ...)
Then K is an amalgamation base ("weakly e.c.") if and only if K is full.
```

Theorem (Autumn 2016)
The estimate holds.

Conjecture (200?)
GVF* is just GVF plus the fullness axiom: $\forall v_{\omega} \exists x \ldots \rightarrow \exists x \forall v_{\omega} \ldots$
This axiom holds in every e.c. GVF, but does it suffice?
Conjecture (201?)

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

I. This really cool estimate holds, and II. it is useful.

Theorem (Spring 2016, assuming the estimate)
Let K be a GVF (non-trivial, alg. clsd, surjective, ...)
Then K is an amalgamation base ("weakly e.c.") if and only if K is full.

Theorem (Autumn 2016)
The estimate holds.

Conjecture (200?)
GVF* is just GVF plus the fullness axiom: $\forall v_{\omega} \exists x \ldots \rightarrow \exists x \forall v_{\omega} \ldots$
This axiom holds in every e.c. GVF, but does it suffice?
Conjecture (201?)

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

I. This really cool estimate holds, and II. it is useful.

Theorem (Spring 2016, assuming the estimate)
Let K be a GVF (non-trivial, alg. clsd, surjective, ...)
Then K is an amalgamation base ("weakly e.c.") if and only if K is full.

Theorem (Autumn 2016)
The estimate holds.

Conjecture (200?)
GVF* is just GVF plus the fullness axiom: $\forall v_{\omega} \exists x \ldots \rightarrow \exists x \forall v_{\omega} \ldots$
This axiom holds in every e.c. GVF, but does it suffice?
Conjecture (201?)

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

I. This really cool estimate holds, and II. it is useful.

Theorem (Spring 2016, assuming the estimate)
Let K be a GVF (non-trivial, alg. clsd, surjective, ...)
Then K is an amalgamation base ("weakly e.c.") if and only if K is full.

Theorem (Autumn 2016)
The estimate holds.

Conjecture (200?)
GVF* is just GVF plus the fullness axiom: $\forall v_{\omega} \exists x \ldots \rightarrow \exists x \forall v_{\omega} \ldots$
This axiom holds in every e.c. GVF, but does it suffice?
Conjecture (201?)

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

I. This really cool estimate holds, and II. it is useful.

Theorem (Spring 2016, assuming the estimate)
Let K be a GVF (non-trivial, alg. clsd, surjective, ...)
Then K is an amalgamation base ("weakly e.c.") if and only if K is full.

Theorem (Autumn 2016)
The estimate holds.

And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.

Rules: choose A, solve for X

And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.
Rules: choose A, solve for X
as
is to
is to
$\{T, F\}$
AR X

Classical logic

Equality

Compactness
Stability

Metric space (complete)
Topometric spaces

Compactness
Stability

And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.
Rules: choose A, solve for X

	$\{T, F\}$	is to
as	A	is to

Classical logic Equality

Compactness Stability

Continuous logic
sup, inf Distance

Metric space (complete) Topometric spaces

And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.
Rules: choose A, solve for X
as

$\{T, F\}$	is to
A	is to

is to
is to

Classical logic

$$
\forall, \exists
$$

Equality

Continuous logic
sup, inf
Distance
Metric space (complete) Topometric spaces

Compactness
Stability

Compactness
Stability

And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.
Rules: choose A, solve for X
$\begin{array}{cc}\{T, F\} & \text { is to } \\ \text { as } & A\end{array}$
Classical logic
\forall, \exists
Equality
Set
Topological spaces
Compactness
Stability

Continuous logic
sup, inf
Distance
Metric space (complete)
Topometric spaces

And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.
Rules: choose A, solve for X
$\begin{array}{cc}\{T, F\} & \text { is to } \\ \text { as } & A\end{array}$
Classical logic

$$
\forall, \exists
$$

Equality
Set
Topological spaces
Compactness
Stability

R
 X

Continuous logic
sup, inf
Distance
Metric space (complete)
Topometric spaces
Compactness
Stability

And now to something completely different

Enough of that. Instead, let us play my favourite analogy game.
Rules: choose A, solve for X
$\begin{array}{ccc} & \{T, F\} & \text { is to } \\ \text { as } & A & \text { is to }\end{array}$

Classical logic
\forall, \exists
Equality
Set
Topological spaces
Compactness
Stability
Algebraic geometry

R

X

Continuous logic

> sup, inf

Distance
Metric space (complete)
Topometric spaces
Compactness
Stability
Classical logic Set
Algebraic geometry

Field Complete metric field: R, C or (K, v)

Definition
A sub-valuation on a ring A is a function $U: A \rightarrow R \cup\{\infty\}$ s.t.:

- $u(a b) \geq u(a)+u(b)($ if $=$, then u is a valuation $)$
- $u\left(a^{n}\right)=n u(a)$
a $u(a+b) \geq \min u(a), u(b)$
- $u(0)=\infty$

A valuation (sub-valuation) $u: A \rightarrow\{0, \infty\}=\{T, F\}$ is just a prime (radical) ideal!

Classical logic	Continuous logic
Set	Complete metric space
Algebraic geometry	$? ? ?$

Field Complete metric field: R, C or (K, v)
Ring $=K[X] / / \quad$ Metric ring ???
Integral domain $K[X]$ with a valuation

```
A sub-valuation on a ring}A\mathrm{ is a function }u:A->R\cup{\infty}\mathrm{ s.t.:
    - u(ab)\gequ(a)+u(b) (if =, then }u\mathrm{ is a valuation)
    a u(an})=nu(a
    - u(a+b)\geq\operatorname{min}u(a),u(b)
- }u(0)=
```

A valuation (sub-valuation) $u: A \rightarrow\{0, \infty\}=\{T, F\}$ is just a prime (radical)
ideal!

Classical logic	Continuous logic
Set	Complete metric space
Algebraic geometry	???

Field \quad Complete metric field: \mathbf{R}, \mathbf{C} or (K, v)
Ring $=K[X] / I$ $K[X]$ modulo... something?
Integral domain

Definition

```
A valuation (sub-valuation) \(u: A \rightarrow\{0, \infty\}=\{T, F\}\) is just a prime (radical) idea!!
```

Classical logic
Set
Algebraic geometry

Continuous logic
Complete metric space ???

Field Complete metric field: \mathbf{R}, \mathbf{C} or (K, v)

$$
\text { Ring }=K[X] / I
$$

Definition

A sub-valuation on a ring A is a function $u: A \rightarrow \mathbf{R} \cup\{\infty\}$ s.t.:

- $u(a b) \geq u(a)+u(b)$ (if $=$, then u is a valuation)
- $u\left(a^{n}\right)=n u(a)$
- $u(a+b) \geq \min u(a), u(b)$
- $u(0)=\infty$

A valuation (sub-valuation) $u: A \rightarrow\{0, \infty\}=\{T, F\}$ is just a prime (radical) idea!!

Classical logic
Set
Algebraic geometry

Continuous logic
Complete metric space
???

Field Complete metric field: \mathbf{R}, \mathbf{C} or (K, v)
Ring $=K[X] / I$ Integral domain
$K[X]$ with a sub-valuation $K[X]$ with a valuation

Definition

A sub-valuation on a ring A is a function $u: A \rightarrow \mathbf{R} \cup\{\infty\}$ s.t.:

- $u(a b) \geq u(a)+u(b)$ (if $=$, then u is a valuation)
- $u\left(a^{n}\right)=n u(a)$
- $u(a+b) \geq \min u(a), u(b)$
- $u(0)=\infty$

A valuation (sub-valuation) $u: A \rightarrow\{0, \infty\}=\{T, F\}$ is just a prime (radical) idea!!

Examples for round two

Theorem (B. '14)
Like ACF, the theory ACMVF of algebraically closed metric valued fields, in continuous logic, has QE and is stable.

```
Definition
Say K}\mathrm{ is a valued field. A valuation on a }K\mathrm{ -vector space E is a function
\mp@subsup{u}{E}{}:E->R\cup{\infty} s.t.:
    - \mp@subsup{u}{E}{}(ax)\geq\mp@subsup{v}{K}{}(a)+\mp@subsup{u}{E}{}(x)
    - }\mp@subsup{u}{E}{}(a+b)\geq\operatorname{min}\mp@subsup{u}{E}{}(a),\mp@subsup{u}{E}{}(b
The tensor product valuation on E\otimes K F is the least valuation such that
(\mp@subsup{u}{E}{}\otimes\mp@subsup{u}{F}{})(x\otimesy)=\mp@subsup{u}{E}{}(x)+\mp@subsup{u}{F}{}(y)
If K\subseteqL,M are algebraically closed, then LQKM is an integral domain.
Theorem (Poineau '13, B. '15)
If K\subseteqI, M are algehraically closed valued fields, then v/ & vM
spaces) is a valuation on the ring L\otimesK M (i.e., "prime"). }\rightsquigarrow independence
```

Theorem (B. '14)
Like ACF, the theory ACMVF of algebraically closed metric valued fields, in continuous logic, has $Q E$ and is stable.

Definition

Say K is a valued field. A valuation on a K-vector space E is a function $u_{E}: E \rightarrow \mathbf{R} \cup\{\infty\}$ s.t.:

- $u_{E}(a x) \geq v_{K}(a)+u_{E}(x)$
- $u_{E}(a+b) \geq \min u_{E}(a), u_{E}(b)$

The tensor product valuation on $E \otimes_{K} F$ is the least valuation such that $\left(u_{E} \otimes u_{F}\right)(x \otimes y)=u_{E}(x)+u_{F}(y)$.

If $K \subseteq L, M$ are algebraically closed, then $L \otimes K M$ is an integral domain.
Theorem (Poineau '13, B. '15)
If $K \subset L, M$ are algebraically closed valued fields, then $v_{L} \otimes v_{M}$ (as K-vector spaces) is a valuation on the ring $L \otimes_{K} M$ (i.e., "prime"). \rightsquigarrow independence.

Theorem (B. '14)

Like ACF, the theory ACMVF of algebraically closed metric valued fields, in continuous logic, has $Q E$ and is stable.

Definition

Say K is a valued field. A valuation on a K-vector space E is a function $u_{E}: E \rightarrow \mathbf{R} \cup\{\infty\}$ s.t.:

- $u_{E}(a x) \geq v_{K}(a)+u_{E}(x)$
- $u_{E}(a+b) \geq \min u_{E}(a), u_{E}(b)$

The tensor product valuation on $E \otimes_{K} F$ is the least valuation such that $\left(u_{E} \otimes u_{F}\right)(x \otimes y)=u_{E}(x)+u_{F}(y)$.

If $K \subseteq L, M$ are algebraically closed, then $L \otimes_{K} M$ is an integral domain.

Theorem (Poineau '13, B. '15)

If $K \subseteq L, M$ are algebraically closed valued fields, then $v_{L} \otimes v_{M}$ (as K-vector spaces) is a valuation on the ring $L \otimes_{K} M$ (i.e., "prime"). \rightsquigarrow independence.

Definition
Let 4 be a [homogeneous, almost finitely generated] sub-valuation on $K[X]=K\left[X_{0}, \ldots, X_{n}\right]$.

$$
\operatorname{ker} u=\{P: u(P)=\infty\}
$$

$$
W=V(\operatorname{ker} u) \subseteq \mathbf{P}^{n}
$$

$$
u^{*}(\xi)=\inf _{\text {homog. } P} v(P(x))-u(P)
$$

$$
\left\{\begin{array}{l}
\tilde{\xi}=[x] \in W \\
\hat{v}(x)=\min _{j} v
\end{array}\right.
$$

> Theorem ("Valued Nullstellensatz") Bijection $u \longleftrightarrow\left(W, u^{*}\right)$. Converse duality: $\eta=u^{*} \Longleftrightarrow u=\eta^{*}$.

Definition

Let u be a [homogeneous, almost finitely generated] sub-valuation on $K[X]=K\left[X_{0}, \ldots, X_{n}\right]$.

$$
\operatorname{ker} u=\{P: u(P)=\infty\} \quad W=V(\operatorname{ker} u) \subseteq \mathbf{P}^{n}
$$

Theorem ("Valued Nullstellensatz")
Bijection $u \longleftrightarrow\left(W, u^{*}\right)$. Converse duality: $\eta=u^{*} \Longleftrightarrow u=\eta^{*}$

Definition

Let u be a [homogeneous, almost finitely generated] sub-valuation on $K[X]=K\left[X_{0}, \ldots, X_{n}\right]$.

$$
\begin{aligned}
& \operatorname{ker} u=\{P: u(P)=\infty\} \quad W=V(\operatorname{ker} u) \subseteq \mathbf{P}^{n} \\
& u^{*}(\xi)=\inf _{\text {homog. } P} v(P(x))-u(P) \quad-\nabla(x) \quad\left\{\begin{array}{l}
\xi=[x] \in W \\
v(x)=\min _{i} v\left(x_{i}\right)
\end{array}\right.
\end{aligned}
$$

Such a function $\eta=u^{*}: W \rightarrow \mathbf{R}$ is a virtual divisor on W.

Theorem ("Valued Nullstellensatz")
Bijection $u \longleftrightarrow\left(W, u^{*}\right)$. Converse duality: $\eta=u^{*} \Longleftrightarrow u=\eta^{*}$

Definition

Let u be a [homogeneous, almost finitely generated] sub-valuation on $K[X]=K\left[X_{0}, \ldots, X_{n}\right]$.

$$
\begin{gathered}
\operatorname{ker} u=\{P: u(P)=\infty\} \quad W=V(\operatorname{ker} u) \subseteq \mathbf{P}^{n} \\
u^{*}(\xi)=\inf _{\text {homog. } P} \frac{v(P(x))-u(P)}{\operatorname{deg} P} \quad\left\{\hat { v } (x) \quad \left\{\begin{array}{l}
\xi=[x] \in W \\
v(x)=\min _{j}
\end{array}\right.\right.
\end{gathered}
$$

Such a function $\eta=u^{*}: W \rightarrow \mathbf{R}$ is a virtual divisor on W.

Theorem ("Valued Nullstellensatz")
Bijection $u \longleftrightarrow\left(W, u^{*}\right)$. Converse duality: $\eta=u^{*} \Longleftrightarrow u=\eta^{*}$

Sub-valuation
\downarrow
$? ? ?$

Definition

Let u be a [homogeneous, almost finitely generated] sub-valuation on $K[X]=K\left[X_{0}, \ldots, X_{n}\right]$.

$$
\begin{aligned}
\operatorname{ker} u=\{P: u(P)=\infty\} & W=V(\operatorname{ker} u) \subseteq \mathbf{P}^{n} \\
u^{*}(\xi)=\inf _{\text {homog. } P} \frac{v(P(x))-u(P)}{\operatorname{deg} P} & -\hat{v}(x) \quad\left\{\begin{array}{l}
\xi=[x] \in W \\
\hat{v}(x)=\min _{i} v\left(x_{i}\right)
\end{array}\right.
\end{aligned}
$$

Such a function $\eta=u^{*}: W \rightarrow \mathbf{R}$ is a virtual divisor on W.
\square Bijection $u \longleftrightarrow\left(\mathbb{W}, u^{*}\right)$. Converse duality: $\eta=u^{*} \Longleftrightarrow u=\eta^{*}$

Radical ideal

Zariski-closed W

Sub-valuation
\uparrow
(W, η), with η a virtual divisor

Definition

Let u be a [homogeneous, almost finitely generated] sub-valuation on $K[X]=K\left[X_{0}, \ldots, X_{n}\right]$.

$$
\begin{aligned}
& \operatorname{ker} u=\{P: u(P)=\infty\} \quad W=V(\operatorname{ker} u) \subseteq \mathbf{P}^{n} \\
& u^{*}(\xi)=\inf _{\operatorname{iomog} . P} \frac{v(P(x))-u(P)}{\operatorname{deg} P}-\hat{v}(x) \quad\left\{\begin{array}{l}
\xi=[x] \in W \\
\hat{v}(x)=\min _{i} v\left(x_{i}\right)
\end{array}\right.
\end{aligned}
$$

Such a function $\eta=u^{*}: W \rightarrow \mathbf{R}$ is a virtual divisor on W.

Theorem ("Valued Nullstellensatz") Bijection $u \longleftrightarrow\left(W, u^{*}\right)$. Converse duality: $\eta=u^{*} \Longleftrightarrow u=\eta^{*}$

Radical ideal

Zariski-closed W

Sub-valuation
\uparrow
(W, η), with η a virtual divisor

Definition

Let u be a [homogeneous, almost finitely generated] sub-valuation on $K[X]=K\left[X_{0}, \ldots, X_{n}\right]$.

$$
\begin{aligned}
& \text { ker } u=\{P: u(P)=\infty\} \quad W=V(\operatorname{ker} u) \subseteq \mathbf{P}^{n} \\
& u^{*}(\xi)=\inf _{\operatorname{homog} . P} \frac{v(P(x))-u(P)}{\operatorname{deg} P}-\hat{v}(x) \quad\left\{\begin{array}{l}
\xi=[x] \in W \\
\hat{v}(x)=\min _{i} v\left(x_{i}\right)
\end{array}\right.
\end{aligned}
$$

Such a function $\eta=u^{*}: W \rightarrow \mathbf{R}$ is a virtual divisor on W.

Theorem ('Valued Nullstellensatz")
Bijection $u \longleftrightarrow\left(W, u^{*}\right)$. Converse duality: $\eta=u^{*} \Longleftrightarrow u=\eta^{*}$.

Lemma

Let $(L, v) \supseteq(K, v)$. Let $f \in L[X]_{m}$ (homog. of degree m) have no zeros on $\mathbf{P}(K)$. Then

$$
\eta(\xi)=\hat{f}(\xi)=v(f(x))-\hat{v}(x) \quad\left(\xi=[x] \in \mathbf{P}^{n}(K)\right)
$$

is a virtual divisor, and every virtual divisor is a uniform limit of such.

- In other words, a virtual divisor is the "echo" of an actual divisor from a larger model.
- In model theoretic terms, it is an externally definable (R-valued) predicate.
- By stability, a virtual divisor is a definable predicate.

Lemma

Let $(L, v) \supseteq(K, v)$. Let $f \in L[X]_{m}$ (homog. of degree m) have no zeros on $\mathbf{P}(K)$. Then

$$
\eta(\xi)=\hat{f}(\xi)=\frac{v(f(x))}{\operatorname{deg} f}-\hat{v}(x) \quad\left(\xi=[x] \in \mathbf{P}^{n}(K)\right)
$$

is a virtual divisor, and every virtual divisor is a uniform limit of such.

- In other words, a virtual divisor is the "echo" of an actual divisor from a larger model.
- In model theoretic terms, it is an externally definable (R-valued) predicate.
- By stability, a virtual divisor is a definable predicate.

Lemma

Let $(L, v) \supseteq(K, v)$. Let $f \in L[X]_{m}$ (homog. of degree m) have no zeros on $\mathbf{P}(K)$. Then

$$
\eta(\xi)=\hat{f}(\xi)=\frac{v(f(x))}{\operatorname{deg} f}-\hat{v}(x) \quad\left(\xi=[x] \in \mathbf{P}^{n}(K)\right)
$$

is a virtual divisor, and every virtual divisor is a uniform limit of such.

- In other words, a virtual divisor is the "echo" of an actual divisor from a larger model.
- In model theoretic terms, it is an externally definable (R-valued) predicate.
- By stability, a virtual divisor is a definable predicate.

Fact (Resultant)

There exists an irreducible polynomial \mathfrak{C} over \mathbf{Z} which takes the coefficients of $n+1$ homogeneous polynomials in $n+1$ unknowns, and vanishes if and only if they have a common zero in \mathbf{P}^{n}. Let us write

$$
f_{0} \wedge \cdots \wedge f_{n}=\mathfrak{C}\left(f_{0}, \ldots, f_{n}\right) .
$$

Proposition

For $i=0, \ldots, n$ assume that:

- L_{i} / K is an extension.
- $f_{i} \in L_{i}[X]_{d_{i}}$ (homogeneous of degree d_{i}).
- $\eta_{i}=\hat{f}_{i}$ is a virtual divisor.

Then, in the free amalgam $\operatorname{Frac}\left(L_{0} \otimes_{K} \cdots \otimes_{K} L_{n}\right)$:

$$
\eta_{0} \wedge \cdots \wedge \eta_{n}:=\frac{v\left(f_{0} \wedge \cdots \wedge f_{n}\right)}{d_{0} \cdots d_{n}} \in \mathbf{R}
$$

depends only on the η_{i} (i.e., on the traces of the f_{i} on K).

- Zariski-closed $W \subseteq \mathbf{P}^{n} \rightsquigarrow$ a pair (W, η). η is a virtual divisor, i.e., the trace on W of a polynomial with external coefficients $\left(f \in L[X]_{d}\right)$.
- Assume for simplicity that $W=\mathbf{P}^{n}$. Then to η we associate

$$
\eta^{\wedge n+1}=\eta \wedge \cdots \wedge \eta=\frac{v(\text { resultant of independent copies of } f)}{d^{n+1}} \in \mathbf{R}
$$

- On the other hand, η contains the same information as a sub-valuation $u=\eta^{*}$ on $K[X]$. How do we recover $\eta^{\wedge n+1}$ from u ?

Definition ("volume $=$ determinant")
Let E be a valued K-vector space, $\mathbf{x}=\left(x_{0}, \ldots, x_{k-1}\right)$ a basis.

$$
\begin{gathered}
\mathbf{x}^{\wedge}=x_{0} \wedge \cdots \wedge x_{k-1}=\sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot x_{\sigma(0)} \otimes \cdots \otimes x_{\sigma(k-1)} \in E^{\otimes k} \\
\operatorname{vol}_{\mathbf{x}}\left(E, u_{E}\right)=u_{E}^{\otimes k}\left(\mathbf{x}^{\wedge}\right)
\end{gathered}
$$

Theorem
Let η be a virtual divisor on \mathbf{P}^{n}, and η^{*} the dual valuation on $K[X]$. Then:

$$
\frac{\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(K[X]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[X]_{m}}=-\frac{\eta^{\wedge n+1}}{n+1}+O\left(m^{-1}\right),
$$

where \mathfrak{M}_{m} denotes the set of monomials of degree m.

Proof of the estimate

Say $\eta=\hat{f} \upharpoonright_{K}$, where $f \in L[X]_{d}$. Take a Morley sequence (many independent copies) $f_{i} \in L_{i}[X]_{d}$.

- $K[X]_{m}$ admits a basis $\Phi=\left(\varphi_{\xi}\right)$, where each φ_{ξ} is mostly a product of $f_{i} s$

$$
\frac{\operatorname{vol}_{\Phi}\left(K[X]_{m}\right)}{m \operatorname{dim} K[X]_{m}}=O\left(m^{-1}\right)
$$

- Change of basis:

- By a "generalised Vandermonde matrix identity":

- Therefore:

Proof of the estimate

Say $\eta=\hat{f} \upharpoonright_{K}$, where $f \in L[X]_{d}$. Take a Morley sequence (many independent copies) $f_{i} \in L_{i}[X]_{d}$.

- $K[X]_{m}$ admits a basis $\Phi=\left(\varphi_{\zeta}\right)$, where each $\varphi_{\mathcal{\zeta}}$ is mostly a product of $f_{i} s$

$$
\frac{\operatorname{vol}_{\Phi}\left(K[X]_{m}\right)}{m \operatorname{dim} K[X]_{m}}=O\left(m^{-1}\right)
$$

- Change of basis:

$$
\Phi^{\wedge}=\operatorname{det} \Phi \cdot \mathfrak{M}_{\boldsymbol{m}}^{\wedge}, \quad \operatorname{vol}_{\Phi}\left(E, u_{E}\right)=\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(E, u_{E}\right)+v(\operatorname{det} \Phi)
$$

- By a "generalised Vandermonde matrix identity":

- Therefore:

Proof of the estimate

Say $\eta=\hat{f} \upharpoonright_{K}$, where $f \in L[X]_{d}$. Take a Morley sequence (many independent copies) $f_{i} \in L_{i}[X]_{d}$.

- $K[X]_{m}$ admits a basis $\Phi=\left(\varphi_{\xi}\right)$, where each φ_{ξ} is mostly a product of $f_{i} s$

$$
\frac{\operatorname{vol}_{\Phi}\left(K[X]_{m}\right)}{m \operatorname{dim} K[X]_{m}}=O\left(m^{-1}\right)
$$

- Change of basis:

$$
\Phi^{\wedge}=\operatorname{det} \Phi \cdot \mathfrak{M}_{\boldsymbol{m}}^{\wedge}, \quad \operatorname{vol}_{\Phi}\left(E, u_{E}\right)=\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(E, u_{E}\right)+v(\operatorname{det} \Phi)
$$

- By a "generalised Vandermonde matrix identity":

$$
v(\operatorname{det} \Phi)=\binom{m / d}{n+1} v\left(f_{0} \wedge \cdots \wedge f_{n}\right)+O\left(m^{n}\right)
$$

- Therefore:

Say $\eta=\hat{f} \upharpoonright_{K}$, where $f \in L[X]_{d}$. Take a Morley sequence (many independent copies) $f_{i} \in L_{i}[X]_{d}$.

- $K[X]_{m}$ admits a basis $\Phi=\left(\varphi_{\xi}\right)$, where each $\varphi_{\mathcal{\xi}}$ is mostly a product of $f_{i} s$

$$
\frac{\operatorname{vol}_{\Phi}\left(K[X]_{m}\right)}{m \operatorname{dim} K[X]_{m}}=O\left(m^{-1}\right)
$$

- Change of basis:

$$
\Phi^{\wedge}=\operatorname{det} \Phi \cdot \mathfrak{M}_{m}^{\wedge}, \quad \operatorname{vol}_{\Phi}\left(E, u_{E}\right)=\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(E, u_{E}\right)+v(\operatorname{det} \Phi)
$$

- By a "generalised Vandermonde matrix identity":

$$
\frac{v(\operatorname{det} \Phi)}{m \operatorname{dim} K[X]_{m}}=\frac{\binom{m / d}{n+1} v\left(f_{0} \wedge \cdots \wedge f_{n}\right)+O\left(m^{n}\right)}{m\binom{m+n}{n}}=\frac{\eta^{\wedge n+1}}{n+1}+O\left(m^{-1}\right)
$$

- Therefore:

Say $\eta=\hat{f} \upharpoonright_{K}$, where $f \in L[X]_{d}$. Take a Morley sequence (many independent copies) $f_{i} \in L_{i}[X]_{d}$.

- $K[X]_{m}$ admits a basis $\Phi=\left(\varphi_{\xi}\right)$, where each $\varphi_{\mathcal{\xi}}$ is mostly a product of $f_{i} s$

$$
\frac{\operatorname{vol}_{\Phi}\left(K[X]_{m}\right)}{m \operatorname{dim} K[X]_{m}}=O\left(m^{-1}\right)
$$

- Change of basis:

$$
\Phi^{\wedge}=\operatorname{det} \Phi \cdot \mathfrak{M}_{m}^{\wedge}, \quad \operatorname{vol}_{\Phi}\left(E, u_{E}\right)=\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(E, u_{E}\right)+v(\operatorname{det} \Phi)
$$

- By a "generalised Vandermonde matrix identity":

$$
\frac{v(\operatorname{det} \Phi)}{m \operatorname{dim} K[X]_{m}}=\frac{\binom{m / d}{n+1} v\left(f_{0} \wedge \cdots \wedge f_{n}\right)+O\left(m^{n}\right)}{m\binom{m+n}{n}}=\frac{\eta^{\wedge n+1}}{n+1}+O\left(m^{-1}\right)
$$

- Therefore:

$$
\frac{\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(K[X]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[X]_{m}}=-\frac{\eta^{\wedge n+1}}{n+1}+O\left(m^{-1}\right)
$$

Back to the global setting

$$
\frac{\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(K[\boldsymbol{X}]_{\boldsymbol{m}}, \eta^{*}\right)}{m \operatorname{dim} K[\boldsymbol{X}]_{\boldsymbol{m}}}=-\frac{\eta^{\wedge \boldsymbol{n}+\boldsymbol{1}}}{n+1}+O\left(m^{-1}\right)
$$

Globally: Let K be a GVF. At each valuation v_{ω} let η_{ω} be a virtual divisor and η_{ω}^{*} the dual sub-valuation on $K[X]$. Integrating both sides:

$$
\frac{\operatorname{vol}^{(}\left(K[X]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[X]_{m}}=-\frac{\eta^{\wedge n+1}}{n+1}+O\left(m^{-1}\right)
$$

(Since K is a GVF, volume is independent of basis)
Which is the special case ($W=\mathbf{P}^{n}$) of:
Theorem

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

Back to the global setting

Locally: $\quad \frac{\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(K[\boldsymbol{X}]_{\boldsymbol{m}}, \eta^{*}\right)}{m \operatorname{dim} K[X]_{\boldsymbol{m}}}=-\frac{\eta^{\wedge \boldsymbol{n + 1}}}{n+\boldsymbol{1}}+O\left(m^{-1}\right)$.
Globally: Let K be a GVF. At each valuation v_{ω} let η_{ω} be a virtual divisor and η_{ω}^{*} the dual sub-valuation on $K[X]$. Integrating both sides:

$$
\frac{\operatorname{vol}\left(K[X]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[X]_{m}}=-\frac{\eta^{\wedge n+1}}{n+1}+O\left(m^{-1}\right)
$$

(Since K is a GVF, volume is independent of basis)

Theorem

Locally: $\quad \frac{\operatorname{vol}_{\mathfrak{M}_{\boldsymbol{m}}}\left(K[\boldsymbol{X}]_{\boldsymbol{m}}, \eta^{*}\right)}{m \operatorname{dim} K[X]_{\boldsymbol{m}}}=-\frac{\eta^{\wedge \boldsymbol{n + 1}}}{n+1}+O\left(m^{-1}\right)$.
Globally: Let K be a GVF. At each valuation v_{ω} let η_{ω} be a virtual divisor and η_{ω}^{*} the dual sub-valuation on $K[X]$. Integrating both sides:

$$
\frac{\operatorname{vol}\left(K[X]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[X]_{m}}=-\frac{\eta^{\wedge n+1}}{n+1}+O\left(m^{-1}\right)
$$

(Since K is a GVF, volume is independent of basis)
Which is the special case $\left(W=\mathbf{P}^{n}\right)$ of:

Theorem

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

Theorem (K GVF, $\boldsymbol{\eta}=\left(\boldsymbol{\eta}_{\omega}: \omega \in \Omega\right)$ virtual divisors on W)

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

Definition

Say that a GVF K is full if it is (non-trivial, algebraically closed, surjective) and for every valued vector space (E, \mathbf{u}):

$$
(\forall \varepsilon>0) \quad(\exists x \in E \backslash\{0\}) \quad \int \mathbf{u}(x)>\frac{\operatorname{vol}(E, \mathbf{u})}{\operatorname{dim} E}-\varepsilon .
$$

Corollary (K full GVF, $\boldsymbol{\eta}=\left(\boldsymbol{\eta}_{\omega}: \omega \in \Omega\right)$ virtual divisors on W)
With earlier hypotheses, there exists $W^{\prime} \subseteq W$ of dimension $\ell-1$ such that

$$
\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W} \leq \frac{\eta^{\wedge \ell} \wedge v \mathfrak{C}_{W^{\prime}}}{\ell \operatorname{deg} W^{\prime}}+\varepsilon
$$

Theorem (K GVF, $\boldsymbol{\eta}=\left(\boldsymbol{\eta}_{\omega}: \omega \in \Omega\right)$ virtual divisors on W)

$$
\frac{\operatorname{vol}\left(K[W]_{m}, \eta^{*}\right)}{m \operatorname{dim} K[W]_{m}}=-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}+O\left(m^{-1}\right) \quad\{\ell=\operatorname{dim} W
$$

Definition

Say that a GVF K is full if it is (non-trivial, algebraically closed, surjective) and for every valued vector space (E, \mathbf{u}):

$$
(\forall \varepsilon>0) \quad(\exists x \in E \backslash\{0\}) \quad \int \mathbf{u}(x)>\frac{\operatorname{vol}(E, \mathbf{u})}{\operatorname{dim} E}-\varepsilon .
$$

Corollary (K full GVF, $\boldsymbol{\eta}=\left(\boldsymbol{\eta}_{\omega}: \omega \in \Omega\right)$ virtual divisors on W)
With earlier hypotheses, there exists $W^{\prime} \subseteq W$ of dimension $\ell-1$ such that

$$
\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W} \leq \frac{\eta^{\wedge \ell} \wedge v \mathfrak{C}_{W^{\prime}}}{\ell \operatorname{deg} W^{\prime}}+\varepsilon \leq \cdots \leq \int \eta(\xi)+\varepsilon^{\prime}, \quad \xi \in W
$$

Corollary (Full GVFs are linearly e.c.)

Let K be a full $G V F, E=(E, \mathbf{u})$ a valued vector space. Let $L \supseteq K$ be a larger $G V F, E_{L}=\left(E \otimes_{K} L, \mathbf{u} \otimes \mathbf{v}_{L}\right)$. If there exists $x \in E_{L}$ such that $\int \mathbf{u}_{L}(x)>0$ then such x already exists in E.

Corollary

Let K be a full GVF, L_{1} and L_{2} two GVF extensions. Then both embed over K in some larger GVF M.

Proof.

By the Corollary, on $L_{1} \otimes K L_{2}$, the valuation $\mathbf{v}_{L_{1}} \otimes \mathbf{v}_{L_{2}}$ is sub-global:

$$
\forall x \neq 0 \quad \int\left(\mathbf{v}_{L_{1}} \otimes \mathbf{v}_{L_{2}}\right)(x) \leq 0 .
$$

This we know how to correct to get $=0$.

Proof of the first corollary

Fullness together with the estimate yields a $g \in K[W]_{m}$ such that (up to small error):

$$
\frac{\eta^{*}(g)}{m} \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

So for all x :

This holds in particular for " $x \in \eta^{\wedge \ell} \wedge v \mathbb{C}_{W}{ }^{\prime}$ ":

When $\left(U_{i}\right)$ are the components of $W \cap V(g)$ (with nultiplicity):

We obtain that one of the U_{i} is as desired.

Proof of the first corollary

Fullness together with the estimate yields a $g \in K[W]_{m}$ such that (up to small error):

$$
\frac{\eta^{*}(g)}{m} \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

So for all x :

$$
\frac{v \circ g(x)}{m}-\eta([x])-\hat{v}(x) \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

This holds in particular for " $x \in \eta^{\wedge \ell} \wedge$ vew w ":

When $\left(U_{i}\right)$ are the components of $W \cap V(g)$ (with nultiplicity):

We obtain that one of the U_{i} is as desired.

Proof of the first corollary

Fullness together with the estimate yields a $g \in K[W]_{m}$ such that (up to small error):

$$
\frac{\eta^{*}(g)}{m} \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

So for all x :

$$
\frac{v \circ g(x)}{m}-\eta([x])-\hat{v}(x) \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

This holds in particular for " $x \in \eta^{\wedge \ell} \wedge v \mathfrak{C}_{W}$ ":

$$
\frac{\eta^{\wedge \ell} \wedge v g \wedge v \mathfrak{C}_{W}}{m \operatorname{deg} W}-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{\operatorname{deg} W} \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

When $\left(U_{i}\right)$ are the components of $W \cap V(g)$ (with nultiplicity):

We obtain that one of the U_{i} is as desired.

Proof of the first corollary

Fullness together with the estimate yields a $g \in K[W]_{m}$ such that (up to small error):

$$
\frac{\eta^{*}(g)}{m} \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

So for all x :

$$
\frac{v \circ g(x)}{m}-\eta([x])-\hat{v}(x) \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

This holds in particular for " $x \in \eta^{\wedge \ell} \wedge v \mathfrak{C}_{W}$ ":

$$
\frac{\eta^{\wedge \ell} \wedge v g \wedge v \mathfrak{C}_{W}}{m \operatorname{deg} W}-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{\operatorname{deg} W} \geq-\frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

When $\left(U_{i}\right)$ are the components of $W \cap V(g)$ (with nultiplicity):

$$
\frac{\eta^{\wedge \ell} \wedge v g \wedge v \mathfrak{C}_{W}}{\ell m \operatorname{deg} W}=\frac{\sum \eta^{\wedge \ell} \wedge v \mathfrak{C}_{U_{i}}}{\ell m \sum \operatorname{deg} U_{s}} \geq \frac{\eta^{\wedge \ell+1} \wedge v \mathfrak{C}_{W}}{(\ell+1) \operatorname{deg} W}
$$

We obtain that one of the U_{i} is as desired.

Thank you

