UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
43.2 43.1 42.2 42.1 41.2 41.1 40.2
40.1 39.2 39.1 38.2 38.1 37.2 37.1
36.2 36.1 35.2 35.1 34.2 34.1 33.2
33.1 32.2 32.1 31.2 31.1 30.2 30.1
29.2 29.1 28.2 28.1 27.2 27.1 26.2
26.1 25.2 25.1 24.2 24.1 23.2 23.1
22.2 22.1 21.2 21.1 20.2 20.1 19.2
19.1 18.2 18.1 17.2 17.1 16.2 16.1
15 14.2 14.1 13.2 13.1 12.2 12.1
11.2 11.1 10.2 10.1 9.2 9.1 8
7.2 7.1 6.2 6.1 5.2 5.1 4.2
4.1 3.2 3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 42, Fasc. 1,
pages 81 - 96
DOI: 10.37190/0208-4147.00055
Published online 11.4.2022
 

Semi-Mittag-Leffler distributions

G. D. Lin
C.-Y. Hu

Abstract: The semi-Mittag-Leffler (SML) distribution arises as the marginal of a stationary Markovian process, and is a generalization of the well-known Mittag-Leffler (ML) or positive Linnik distribution. Unlike the ML distribution, which has been well established, few properties of the SML distribution are discussed in the literature. In this paper, we derive some more characterizations of the SML and related distributions. By using stochastic inequalities, we further extend some characterizations, including Pitman and Yor's (2003) result about the hyperbolic sine distribution.

2010 AMS Mathematics Subject Classification: Primary 62E10, 60E10, 60G10; Secondary 33E12, 42B10.

Keywords and phrases: semi-Mittag-Leffler distribution, positive semi-stable distribution, geometric infinite divisibility, Laplace--Stieltjes transform, characterization of distributions, random summation.

References


H. Albrecher, Martin Bladt and Mogens Bladt, Multivariate matrix Mittag-Leffler distributions, Ann. Inst. Statist. Math. 73 (2021), 369-394.

L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist. 76, Springer, New York, 1992.

G. Divanji, On semi-α-Laplace distributions, J. Indian Statist. Assoc. 26 (1988), 31-38.

D. P. Gaver and P. A. W. Lewis, First-order autoregressive Gamma sequences and point processes, Adv. Appl. Probab. 12 (1980), 727-745.

B. V. Gnedenko, Limit theorems for sums of a random number of positive independent random variables, in: Proc. 6th Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, 1970, 537-549.

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2nd ed., Springer Monogr. Math., Springer, Berlin, 2020.

R. Gorenflo, F. Mainardi and S. Rogosin, Mittag-Leffler function: properties and applications, in: Handbook of Fractional Calculus with Applications, Vol. 1, De Gruyter, Berlin, 2019, 269-295.

H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math. 2011 (2011), art. 298628, 51 pp.

C.-Y. Hu and G. D. Lin, On the geometric compounding model with applications, Probab. Math. Statist. 21 (2001), 135-147.

C.-Y. Hu and G. D. Lin, Characterizations of the exponential distribution by stochastic ordering properties of the geometric compound, Ann. Inst. Statist. Math. 55 (2003), 499-506.

K. Jayakumar and R. N. Pillai, The first-order autoregressive Mittag-Leffler process, J. Appl. Probab. 30 (1993), 462-466.

K. Jayakumar and R. P. Suresh, Mittag-Leffler distributions, J. Indian Soc. Probab. Statist. 7 (2003), 52-71.

W. Jedidi and T. Simon, Further examples of GGC and HCM densities, Bernoulli 19 (2013), 1818-1838.

K. K. Jose, P. Uma, V. S. Lekshmi and H. J. Haubold, Generalized Mittag-Leffler distributions and processes for applications in astrophysics and time series modeling, in: Proc. 3rd UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, Springer, Berlin, 2010, 79-92.

K. K. Kataria and P. Vellaisamy, On the convolution of Mittag-Leffler distributions and its applications to fractional point processess, Stochastic Anal. Appl. 37 (2019), 115-122.

L. B. Klebanov, G. M. Maniya and I. A. Melamed, A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables, Theory Probab. Appl. 29 (1984), 791-794.

T. J. Kozubowski, Geometric infinite divisibility, stability, and self-similarity: an overview, Stability in Probability, Banach Center Publ. 90, Inst. Math., Warszawa, Polish Acad. Sci., 2010, 39-65.

G. D. Lin, Characterizations of the exponential distribution via the blocking time in a queueing system, Statist. Sinica 3 (1993), 577-581.

G. D. Lin, On the Mittag-Leffler distributions, J. Statist. Plann. Inference 74 (1998), 1-9.

G. D. Lin and C.-Y. Hu, Characterizations of distributions via the stochastic ordering property of random linear forms, Statist. Probab. Lett. 51 (2001), 93-99.

M. Maejima, Semistable distributions, in: Lévy Processes, Birkhäuser, Boston, MA, 2001, 169-183.

F. Mainardi, On some properties of the Mittag-Leffler function Eα(-tα), completely monotone for t>0 with 0<α<1, Discrete Contin. Dynam. Systems Ser. B 19 (2014), 2267-2278.

F. Mainardi, Why the Mittag-Leffler function can be considered the Queen function of the Fractional Calculus?, Entropy 22 (2020), art. 1359, 29 pp.

A. M. Mathai, Fractional calculus and statistical distributions, in: Proc. National Workshop on Fractional Calculus and Statistical Distributions, Math. Sci. Press, CMS Pala Campus, 2010, 61-80.

N. R. Mohan, R. Vasudeva and H.V. Hebbar, On geometrically infinitely divisible laws and geometric domains of attraction, SankhyだSer. A 55 (1993), 171-179.

R. N. Pillai, Semi-α-Laplace distributions, Comm. Statist. Theory Methods 14 (1985), 991-1000.

R. N. Pillai, Renewal process with Mittag-Leffler waiting time, presented at the 21st Annual Conference of Operational Society of India, Opsearch 26 (1988), p.57.

R. N. Pillai, On Mittag-Leffler functions and related distributions, Ann. Inst. Statist. Math. 42 (1990), 157-161.

R. N. Pillai, Harmonic mixtures and geometric infinite divisibility, J. Indian Statist. Assoc. 28 (1990), 87-98.

J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math. 55 (2003), 292-330.

F.W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Dekker, New York, 2004.

H.-C. Yeh, Multivariate semi-α-Laplace distributions, Comm. Statist. Theory Methods 46 (2017), 7661-7671.

Download:    Abstract    Full text