R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, 95:263-273, 1960.
K. Bogdan, T. Grzywny and M. Ryznar, Density and tails of unimodal convolution semigroups, 266: 3543-3571, 2014.
K. Bogdan, T. Grzywny and M. Ryznar, Density and tails of unimodal convolution semigroups, arXiv:1305.0976v1 (2013).
T. Grzywny and K. Szczypkowski, Estimates of heat kernels of non-symmetric Lévy processes, arXiv:1710.07793v2 (2020).
O. Kallengerg, Foundations of Modern Probability, Springer, New York, 2002.
W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed., Wiley, New York, 1971.
J. P. Nolan, Numerical calculation of stable densities and distribution functions, 13:759-774, 1997.
G. Pólya, On the zeros of an integral function represented by Fourier’s integral, 52:185-188, 1923.
W. E. Pruitt, The growth of random walks and Lévy processes, 9: 948-956, 1981.
J. Rosiński, On the series representation of infinitely divisible random vectors, 18: 405-430, 1990.
J. Rosiński, Simulations of Lévy processes, in: Encyclopedia of Statistics in Quality and Reliability: Computationally Intensive Methods and Simulation, Wiley, 2008.
G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman and Hall, New York, 1994.
P. Sztonyk, Transition density estimates for jump Lévy processes, 121: 1245-1265, 2011.
M. Talagrand, Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, Ergeb. Math. Grenzgeb. 60, Springer, New York, 2014.
V. Uchaikin and V. Zolotarev, Chance and Stability: Stable Distributions and their Applications, De Gruyter, Berlin, 2011.
T. Watanabe, Asymptotic estimates of multi-dimensional stable densities and their applications, 359: 2851-2879, 2007.
V. M. Zolotarev, One-Dimensional Stable Distributions, Transl. Math. Monogr. 65, Amer. Math. Soc., Providence, RI, 1986.
|