K. Aase, B. Øksendal, N. Privault and J. Ubøe, White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance, Finance Stoch. 4 (2000), 465-496.
L. Accardi, U. C. Ji and K. Saitô, Analytic characterizations of infinite dimensional distributions,
Infin. Dimens. Anal. Quantum Probab. Related Topics 20 (2017), art. 1750007, 13Â pp.
F. E. Benth, T. Deck and J. Potthoff, A white noise approach to a class of non-linear stochastic heat equations, J. Funct. Anal. 146 (1997), 382-415.
M. Bożejko, B. Kümmerer and R. Speicher, q-Gaussian processes: Non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), 129-154.
D. M. Chung and T. S. Chung, Wick derivations on white noise functionals, J. Korean Math.
Soc. 33 (1996), 993-1008.
D. M. Chung, U. C. Ji and N. Obata, Quantum stochastic analysis via white noise operators in weighted Fock space, Rev. Math. Phys. 14 (2002), 241-272.
E. Effros and M. Popa, Feynman diagrams and Wick products associated with q-Fock space, Proc. Nat. Acad. Sci. USA 100 (2003), 8629-8633.
M. Grothaus, Yu. G. Kondratiev and L. Streit, Regular generalized functions in Gaussian analysis. Infin. Dimens. Anal. Quantum Probab. Related Topics 2 (1999), 1-25.
M. Grothaus, Yu. G. Kondratiev and G. F. Us, Wick calculus for regular generalized stochastic functionals, Random Oper. Stochastic Equations 7 (1999), 263-290.
M. Grothaus and L. Streit, On regular generalized functions in white noise analysis and their applications, Methods Funct. Anal. Topology 6 (2000), 14-27.
T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes 13, Carleton Univ., Ottawa, 1975.
T. Hida, Brownian Motion, Springer, 1980.
T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, White Noise: An Infinite Dimensional Calculus, Kluwer, 1993.
H. Holden, B. Øksendal, J. Ubøe, and T. Zhang, Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach,
Birkhäuser, Boston, MA, 1996.
R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys. 93 (1984), 301-323.
U. C. Ji, Stochastic integral representation theorem for quantum semimartingales, J. Funct. Anal. 201 (2003), 1â29.
U. C. Ji and E. Lytvynov, Wick calculus for noncommutative white noise corresponding to q-deformed commutation relations, Complex Anal. Oper. Theory 12 (2018), 1497-1517.
U. C. Ji and N. Obata, A unified characterization theorem in white noise theory, Infin. Dimens. Anal. Quantum Probab. Related Topics 6 (2003), 167â178.
U. C. Ji and N. Obata, Generalized white noise operators fields and quantum white noise derivatives, in: Analyse et Probabilités, Sém. Congr. 16, Soc. Math. France, 2007, 17-33.
U. C. Ji and N. Obata, Annihilation-derivative, creation-derivative and representation of quantum martingales, Comm. Math. Phys. 286 (2009), 751-775.
U. C. Ji and N. Obata, Implementation problem for the canonical commutation relation in terms of quantum white noise derivatives, J. Math. Phys. 51 (2010), art. 123507, 15 pp.
U. C. Ji and N. Obata, Quantum white noise calculus and applications, in: Real and Stochastic Analysis, World Sci., Hackensack, NJ, 2014, 269-353.
U. C. Ji and N. Obata, An implementation problem for boson fields and quantum Girsanov transform, J. Math. Phys. 57 (2016), art. 083502, 21 pp.
U. C. Ji, N. Obata and H. Ouerdiane, Analytic characterization of generalized Fock space operators as two-variable entire functions with growth condition, Infin. Dimens. Anal. Quantum Probab.
Related Topics 5 (2002), 395-407.
I. Królak, Wick product for commutation relations connected with YangâBaxter operators and new constructions of factors, Comm. Math. Phys. 210 (2000), 685-701.
I. Kubo and S. Takenaka, Calculus on Gaussian white noise IâIV, Proc. Japan Acad. 56A (1980), 376-380; 411-416; 57A (1981), 433-437; 58A (1982), 186-189.
H. -H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
N. A. Kachanovsky, An extended stochastic integral and a Wick calculus on parametrized Kondratiev-type spaces of Meixner white noise, Infin. Dimens. Anal. Quantum Probab. Related Topics 11 (2008), 541-564.
Y. G. Kondratiev, P. Leukert and L. Streit, Wick calculus in Gaussian analysis, Acta Appl. Math. 44 (1996), 269-294.
P.-A. Meyer, Quantum Probability for Probabilists, Lecture Notes in Math. 1538, Springer, 1993.
N. Obata, Operator calculus on vector-valued white noise functionals, J. Funct. Anal. 121 (1994), 185-232.
N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Math. 1577, Springer, 1994.
N. Obata, Generalized quantum stochastic processes on Fock space, Publ. RIMS Kyoto Univ. 31 (1995), 667-702.
N. Obata, Constructing one-parameter transformations on white noise functions in terms of equicontinuous generators, Monatsh. Math. 124 (1997), 317-335.
N. Obata, Wick product of white noise operators and quantum stochastic differential equations, J. Math. Soc. Japan 51 (1999), 613-641.
N. Obata and H. Ouerdiane, A note on convolution operators in white noise calculus, Infin. Dimens. Anal. Quantum Probab. Related Topics 14 (2011), 661-674.
K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, 1992.
J. Potthoff and L. Streit, A characterization of Hida distributions, J. Funct. Anal. 101 (1991), 212-229.
J. Potthoff and M. Timpel, On a dual pair of spaces of smooth and generalized random variables, Potential Anal. 4 (1995), 637-654.
|