M. Ajtai, J. Komlós and G. Tusnády, On optimal matchings, Combinatorica 4 (1984), 259-264.
L. Ambrosio, F. Stra and D. Trevisan, A PDE approach to a 2-dimensional matching problem, Probab. Theory Related Fields 173 (2019), 433-478.
D. Bakry, Étude des transformations de Riesz sur les variétés riemanniennes à courbure de Ricci
minorée, in: Séminaire de Probabilités XXI, Lecture Notes in Math. 1247, Springer, 1987, 137-172.
D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren Math. Wiss. 348, Springer, 2014.
P. Berthet and J. Fort, Exact rate of convergence of the expected W2 distance between the empirical and true Gaussian distribution,
Electron. J. Probab. 25 (2020), art. 12, 16 pp.
S. Bobkov and M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich transport distances,
Mem. Amer. Math. Soc. 261 (2019), no. 1259, v+126 pp.
S. Caracciolo, M. D'Achille and G. Sicuro, Anomalous scaling of the optimal cost in the one-dimensional
random assignment problem, J. Statist. Phys. 174 (2019), 846-864.
S. Dereich, M. Scheutzow and R. Schottstedt, Constructive quantization: approximation by empirical measures,
Ann. Inst. H. Poincaré Probab. Statist. 49 (2013), 1183-1203.
N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Related Fields 162 (2015), 707-738.
M. Ledoux, On optimal matching of Gaussian samples, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklova 457 (2017), 226-264.
M. Ledoux, On optimal matching of Gaussian samples II, 2018.
P.-A. Meyer, Transformations de Riesz pour les lois gaussiennes, in: Séminaire de Probabilités XV, Lecture Notes in Math. 1059, Springer, 1984, 179-193.
R. Peyre, Comparison between W2 distance and
L-1 norm, and localization
of Wasserstein distance, ESAIM Control Optim. Calc. Var. 24 (2018), 1489-1501.
H. P. Rosenthal, On the subspaces of Lp (p„>„2) spanned by sequences
of independent random variables, Israel J. Math. 8 (1970), 273-303.
F. Santambrogio, Optimal Transport for Applied Mathematicians, Progr. Nonlinear Differential Equations Appl. 87, Birkhäuser, 2015.
M. Talagrand, Upper and Lower Bounds of Stochastic Processes, Ergeb. Math. Grenzgeb. 60, Springer, 2014.
M. Talagrand, Scaling and non-standard matching theorems, C. R. Math. Acad. Sci. Paris 356 (2018), 692-695.
C. Villani, Optimal Transport: Old and New, Grundlehren Math. Wiss. 338, Springer, 2009.
J. Yukich, Some generalizations of the Euclidean two-sample matching problem, in: Probability in Banach Spaces 8, Progr. Probab. 30, Birkhäuser, 1992, 55-66.
|