A. Bensoussan, Maximum principle and dynamic programming approaches to the optimal control of partially observed diffusions, Stochastics 9 (1983), 169-222.
J. M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl. 44 (1973), 384-404.
W. H. Fleming and T. Pang, An application of stochastic control theory to financial economics, SIAM J. Control 43 (2004), 502-531.
N. C. Framstad, B. Øksendal and A. Sulem, Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance, J. Optim. Theory Appl. 124 (2005), 511-512.
J. Janczura and A. Wyłomańska, Subdynamics of financial data from fractional Fokker-Planck equation, Acta Phys. Polon. B 40 (2009), 1341â1351.
M. Hahn, K. Kobayashi and S. Umarov, SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theoret. Probab. 25 (2012), 262-279.
E. Jum and K. Kobayashi, A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion, Probab. Math. Statist. 36 (2016), 201-220.
H. J. Kushner, Necessary conditions for continuous parameter stochastic optimization problems, SIAM J. Control 10 (1972), 550-565.
M. Magdziarz and T. Zorawik, Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space-time-dependent coefficients,
Proc. Amer. Math. Soc. 144 (2016), 1767-1778.
M. M. Meerschaert and P. Straka, Inverse stable subordinators, Math. Model. Nat. Phenom. 8 (2013), no. 2, 1-16.
E. Nane and Y. Ni, Path stability of stochastic differential equations driven by time-changed L'evy noises, ALEA Latin Amer. J. Probab. Math. Statist. 15 (2018), 479-507.
E. Nane and Y. Ni, Stability of the solution of stochastic differential equation driven by time-changed L'evy noise, Proc. Amer. Math. Soc. 145 (2017), 3085-3104.
E. Nane and Y. Ni, Stochastic solution of fractional Fokker-Planck equations with space-time-dependent coefficients, J. Math. Anal. Appl. 442 (2016), 103-116.
S. G. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim. 28 (1990), 966-979.
W. J. Runggaldier, On stochastic control in finance, in: Mathematical Systems Theory in Biology, Communications, Computation, and Finance, Springer, New York, 2003, 317-344.
D. Wilkinson, Stochastic Modelling for Systems Biology, Chapman and Hall/CRC, New York, 2006.
Q. Wu, Stability analysis for a class of nonlinear time-changed systems, Cogent Math. 3 (2016), art. 1228273, 10 pp.
|