UNIVERSITY
OF WROC£AW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 41, Fasc. 1,
pages 77 - 87
DOI: 10.37190/0208-4147.41.1.6
Published online 8.4.2021
 

Scaled Fisher consistency of the partial likelihood estimator in the Cox model with arbitrary frailty estimator in the Cox model with arbitrary frailty

Tadeusz Bednarski
Piotr B. Nowak

Abstract: It is argued that inference based on the Cox regression model and the partial likelihood estimator is possible for various extensions of the model, which in particular include an arbitrary frailty variable. We demonstrate that the estimator in such a general setup is Fisher consistent up to a scaling factor under symmetry type distributional assumptions on explanatory variables. A simulation experiment shows exemplary behaviour of the estimator and also of a test of fit based on the Anderson–Darling statistic for different Cox model extensions.

2010 AMS Mathematics Subject Classification: Primary 62N01; Secondary 62F12.

Keywords and phrases: Cox model, frailty models, Fisher consistency.

O. O. Aalen, Modelling heterogeneity in survival analysis by the compound Poisson distribution, Ann. Appl. Probab. 4 (1992), 951-972.

O. O. Aalen, O. Borgan, and H. K. Gjessing, Survival and Event History Analysis: A Process Point of View, Springer, New York, 2008.

I. Baltazar-Aban and E. A. Pena, Properties of hazard-based residuals and implications in model diagnostics, J. Amer. Statist. Assoc. 90 (1995), 185-197.

T. Bednarski, Robust estimation in Cox’s regression model, Scand. J. Statist. 20 (1993), 213-225.

T. Bednarski, and M. Skolimowska-Kulig, Scaled consistent estimation of regression parameters in frailty models, Acta Univ. Lodziensis Folia Oeconomica 5(338) (2018), 133-142.

T. Bednarski and N. Skolimowska-Kulig, On scale Fisher consistency of maximum likelihood estimator for the exponential regression model under arbitrary frailty, Statist. Probab. Lett. 150 (2019), 9-12.

D. R. Cox, Regression models and life-tables (with discussion), J. Roy. Statist. Soc. B 34 (1972), 187-220.

R. Henderson and P. Oman, Effect of frailty on marginal regression estimates in survival analysis, J. Roy. Statist. Soc. B 61 (1999), 367-379.

R. A. Marona, R. D. Martin, and V. J. Yohai, Robust Statistics: Theory and Methods, Wiley, 2006.

S. A. Murphy, Consistency in a proportional hazard model incorporating a random effect, Ann. Statist. 22 (1994), 712-734.

P. Ruud, Sufficient conditions for the consistency of maximum likelihood estimation despite misspecification of distribution in multinomial discrete choice models, Econometrica 51 (1983), 225-228.

P D. Sasieni, Maximum weighted partial estimates for Cox model, J. Amer. Statist. Assoc. 88 (1993), 144-152.

T. Stoker, Consistent estimation of scaled coefficients, Econometrica 54 (1986), 1461-1481.

J. W. Vaupel, K. G. Manton, and E. Stallard, The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography 16 (1979), 439-454.

A. Wienke, Frailty Models in Survival Analysis, Chapman and Hall, 2011.

Download:    Abstract    Full text