UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 41, Fasc. 1,
pages 39 - 54
DOI: 10.37190/0208-4147.41.1.4
Published online 19.3.2021
 

A class of weighted rank correlation measures

Majid Sanatgar
Ali Dolati
Mohammad Amini

Abstract: We propose a class of weighted rank correlation measures extending Spearman's rho. This class consists of two types of measures. The first type, which extends Blest's rank correlation, places more emphasis on the agreement in top ranks. The second one places more emphasis on the agreement in the bottom ranks. The asymptotic distribution of the proposed measures and some of their properties are studied. A simulation study is performed to compare the performance of the proposed statistics for testing independence by using asymptotic relative efficiency calculations.

2010 AMS Mathematics Subject Classification: Primary 62H20; Secondary 62H05.

Keywords and phrases: weighted rank correlation, copula, asymptotic distribution.

J. Behboodian, A. Dolati and M. Ubeda-Flores, Measures of association based on average quadrant dependence, J. Probab. Statist. Sci. 3 (2005), 161-173.

D. C. Blest, Rank correlation an alternative measure, Austral. New Zealand J. Statist. 42 (2000), 101-111.

T. Coolen-Maturi, A new weighted rank coefficient of concordance, J. Appl. Statist. 41 (2014), 1721-1745.

L. Dancelli, M. Manisera and M. Vezzoli, On two classes of weighted rank correlation measures deriving from the Spearman's \(\rho\), in: Statistical Models for Data Analysis, Springer, (2013), 107-114.

C. Genest and J. F. Plante, On Blest's measure of rank correlation, Canad. J. Statist. 31 (2003), 35-52.

J.Hajek, A Course in Nonparametric Statistics, Holden-Day, San Francisco, 1969.

R. L. Iman and W. J. Conover, A measure of top-down correlation, Technometrics 29 (1987), 351-357.

M. Kendall, Rank Correlation Methods, Griffin, London, 1948.

P. Matula, A note on some inequalities for certain clases of positively dependent random variables, Probab. Math. Statist. 24 (2004), 17-26

T. A. Maturi and E. H. Abdelfattah, A new weighted rank correlation, J. Math. Statist. 4 (2008), 226-230.

R. B. Nelsen, An Introduction to Copulas, 2nd ed., Springer, New York, 2006.

Ya. Yu. Nikitin, Asymptotic Efficiency of Nonparametric Tests, Cambridge Univ. Press, 2009.

J. Pinto da Costa and C. Soares, A weighted rank measure of correlation, Austral. New Zealand J. Statist. 47 (2005), 515-529.

D. Quade and I. Salama, A survey of weighted rank correlation, in: Order Statistics and Nonparametrics: Theory and Applications, 1992, 213-224.

L. Ruschendorf, Asymptotic distributions of multivariate rank order statistics, Ann. Statist. 4 (1976), 912-923.

I. Salama and D. Quade, A nonparametric comparison of two multiple regressions by means of a weighted measure of correlation, Comm. Statist. Theory Methods 11 (1982), 1185-1195.

J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions, Bernoulli 18 (2012), 764-782.

G. S. Shieh, A weighted Kendall’s tau statistic, Statist. Probab. Lett. 39 (1998), 17-24.

Z. Sidak, P. K. Sen, and J. Hajek, Theory of Rank Tests, Academic Press, 1999.

A. Sklar, Fonctions de repartition   n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.

A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: with Applications to Statistics, Springer, New York, 1996.

Download:    Abstract    Full text