R. Bañuelos and R. G. Smits, Brownian motion in cones, Probab. Theory Related Fields, 108(3):299-319, 1997.
R. Bañuelos and K. Bogdan, Symmetric stable processes in cones, Potential Anal., 21(3):263-288, 2004.
I. Chavel, Eigenvalues in Riemannian Geometry, Pure Appl. Math. 115, Academic Press, Orlando, FL, 1984.
K. L. Chung and Z. X. Zhao, From Brownian Motion to Schredingers Equation, Grundlehren Math. Wiss. 312. Springer, Berlin, 1995.
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92, Cambridge Univ. Press, Cambridge, 1990.
R. D. De Blassie, Remark on exit times from cones in â„n of Brownian motion, Probab. Theory Related Fields, 79(1):95-97, 1988.
H. Donnelly and P. Li, Lower bounds for the eigenvalues of Riemannian manifolds, Michigan Math. J., 29(2):149-161, 1982.
G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer, Berlin, 1974.
A. Galmarino, Representation of an isotropic diffusion as a skew product, Z. Wahrsch. Verw. Gebiete 1 (1963), 359-378.
G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc., 81:264-293, 1956.
T. Kulczycki, Exit time and Green function of cone for symmetric stable processes, Probab. Math. Statist., 19(2):337-374, 1999.
J. Lamperti, Semi-stable Markov processes. I, Z. Wahrsch. Verw. Gebiete, 22:205-225, 1972.
M. Liao, Lévy Processes in Lie Groups, Cambridge Tracts in Math. 162, Cambridge Univ. Press, Cambridge, 2004.
M. Liao and L. Wang, Lévy-Khinchin formula and existence of densities for convolution semigroups on symmetric spaces, Potential Anal., 27(2):133-150, 2007.
M. Liao and L. Wang, Isotropic self-similar Markov processes, Stochastic Process. Appl., 121(9):2064-2071, 2011.
H. Matsumoto and M. Yor, Exponential functionals of Brownian motion. I. Probability laws at fixed time, Probab. Surv., 2:312-347, 2005.
K. Maulik and B. Zwart. Tail asymptotics for exponential functionals of Lévy processes, Stochastic Process. Appl., 116(2):156-177, 2006.
P. J. Méndez-Hernández, Exit times from cones in $\R^d$ of symmetric stable processes, Illinois J. Math., 46(1): 155-163, 2002.
V. Rivero, Recurrent extensions of self-similar Markov processes and Crames condition, Bernoulli, 11(3):471-509, 2005.
H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer, New York, 1974.
M. Yor, Sur les lois des fonctionnelles exponentielles du mouvement brownien, consideres en certains instants aletoires, C. R. Acad. Sci. Paris Ser. I Math., 314(12):951-956, 1992.
|