[1] A. Araujo E. Giné (1980), The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York.
[2] O. E. Barndorff-Nielsen S. Thorbjørnsen (2002), Self-decomposability and Lévy processes in free probability, Bernoulli 8, 323-366.
[3] H. Bercovici and V. Pata (1999), Stable laws and domains of attraction in free probability theory, Ann. of Math. 149, 1023-1060.
[4] H. Bercovici D. V. Voiculescu (1993), Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42, 733-773.
[5] P. Billingsley (1986), Probability and Measure, 2nd ed., Wiley, New York.
[6] I. S. Gradshteyn I. M. Ryzhik (1994), Table of Integrals, Series and Products, 5th ed., Academic Press, New York.
[7] T. Hasebe, N. Sakuma S. Thorbjørnsen (2019), The normal distribution is freely self-0ptdecomposable, Int. Math. Res. Notices, 1758-1787.
[8] J. Jacod (1985), Grossissements de filtration et processus d'Ornstein-Uhlenbeck generalisé, in: Grossissements de filtrations: exemples et applications, T. Jeulin and M. Yor (eds.), Lecture Notes in Math. 1118, Springer, 37–44.
[9] L. Jankowski Z. J. Jurek (2012), Remarks on restricted Nevanlinna transforms, Demonstratio Math. 45, 297-307.
[10] Z. J. Jurek (1996), Series of independent exponential random variables, in: Probability Theory and Mathematical Statistics (Tokyo, 1995), World Sci., 174-182.
[11] Z. J. Jurek (2006), Cauchy transforms of measures as some functionals of Fourier transforms, Probab. Math. Statist. 26, 187-200.
[12] Z. J. Jurek (2007), Random integral representations for free-infinitely divisible and tempered stable distributions, Statist. Probab. Lett. 77, 417-425.
[13] Z. J. Jurek (2007), On a method of introducing free-infinitely divisible probability measures, Demonstratio Math. 49, 236-251.
[14] Z. J. Jurek W. Vervaat (1983), An integral representation for self-decomposable Banach space valued random variables, Z. Wahrsch. Verw. Gebiete 62, 247-262.
[15] Z. J. Jurek M. Yor (2004), Selfdecomposable laws associated with hyperbolic functions, Probab. Math. Statist. 24, 181-191.
[16] K. R. Parthasarathy (1967), Probability Measures on Metric Spaces, Academic Press, New York.
[17] J. Pitman M. Yor (2003), Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math. 55, 292-330.
[18] D. Voiculescu (1999), Lectures on free probability, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1998), Springer, 279-349.