[1]
B. Ɔmiel, T. Inglot and T. Ledwina, Intermediate efficiency of some weighted goodness-of-fit statistics, J. Nonparametric Statist. (online, 2020).
[2] Ermakov, M. S. (2004). On asymptotically efficient statistical inference for moderate deviation probabilities, Theory Probab. Appl. , 622-641.
[3] Inglot, T. (1999). Generalized intermediate efficiency of goodness of fit tests, Math. Methods Statist. , 487-509.
[4] Inglot, T., and Ledwina, T. (1990). On probabilities of excessive deviations for Kolmogorov-Smirnov, Cramér- von Mises and chi-square statistics, Ann. Statist. , 1491-1495.
[5] Inglot, T., and Ledwina, T. (1996). Asymptotic optimality of data driven Neyman's tests for uniformity, Ann. Statist. , 1982-2019.
[6] Inglot, T., and Ledwina, T. (2001). Intermediate approach to comparison of some goodness-of-fit tests, Ann. Inst. Statist. Math. , 810-834.
[7] Inglot, T., and Ledwina, T. (2006). Intermediate efficiency of some max-type statistics, J. Statist. Plan. Inference , 2918-2935.
[8] Inglot, T., Ledwina, T., and Ćmiel, B. (2019). Intermediate efficiency in some nonparametric testing problems with an application to some weighted statistics, ESAIM Probab. Statist. , 697-738.
[9] Kallenberg, W. C. M. (1983). Intermediate efficiency, theory and examples, Ann. Statist. , 1401-1420.
[10] Mason, D. M., and Eubank, R. L. (2012). Moderate deviations and intermediate efficiency for lack-of-fit tests, Statistics Risk Modeling , 175-187.
[11] Mirakhmedov, S. M. (2019). Asymptotic intermediate efficiency of the chi-square and likelihood ratio goodness of fit tests, arXiv:1610.04135v3 .
[12] Yurinskii, V. V. (1976). Exponential inequalities for sums of random vectors, J. Multivariate Anal. , 473-499.