[1] R. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Inst. Math. Statist., Hayward, CA, 1990.
[2] J. M. P. Albin and H. Choi, A new proof of an old result by Pickands, Electron. Comm. Probab., 15:339-345, 2010.
[3] L. Bai, K. Dębicki, E. Hashorva, and L. Luo, On generalised Piterbarg constants, Methodology Computing Appl. Probab., 20(1):137-164, 2018.
[4] T. Bojdecki, L. G. Gorostiza, and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Statist. Probab. Lett., 69(4):405-419, 2004.
[5] K. Burnecki and Z. Michna, Simulation of Pickands constants, Probab. Math. Statist., 22:193-199, 2002.
[6] K. Dębicki, Ruin probability for Gaussian integrated processes, Stoch. Process. Appl., 98(1):151-174, 2002.
[7] K. Dębicki, S. Engelke, and E. Hashorva, Generalized Pickands constants and stationary max-stable processes, Extremes, 20(3):493-517, 2017.
[8] K. Dębicki and E. Hashorva, On extremal index of max-stable processes, Probab. Math. Statist., 27(2):299-317, 2017.
[9] K. Dębicki and E. Hashorva, Approximation of supremum of max-stable stationary processes & Pickands constants, J. Appl. Probab. 33 (2020), 444-464.
[10] K. Dębicki, E. Hashorva, L. Ji, and T. Rolski, Extremal behavior of hitting a cone by correlated Brownian motion with drift, Stoch. Process. Appl., 128(12):4171-4206, 2018.
[11] K. Dębicki, E. Hashorva, L. Ji, and K. Tabiś, Extremes of vector-valued Gaussian processes: Exact asymptotics, Stoch. Process. Appl., 125(11):4039-4065, 2015.
[12] K. Dębicki, E. Hashorva, and P. Liu, Uniform tail approximation of homogeneous functionals of Gaussian fields, Adv. Appl. Probab., 49(4):1037-1066, 2017.
[13] K. Dębicki and M. Mandjes, Exact overflow asymptotics for queues with many Gaussian inputs, J. Appl. Probab., 40(3):704-720, 2003.
[14] K. Dębicki, Z. Michna, and T. Rolski, Simulation of the asymptotic constant in some fluid models, Stoch. Models, 19(3):407-423, 2003.
[15] K. Dębicki and K. Tabiś, Extremes of the time-average of stationary Gaussian processes, Stoch. Process. Appl., 121(9):2049-2063, 2011.
[16] A. B. Dieker and T. Mikosch, Exact simulation of Brown-Resnick random fields at a finite number of locations, Extremes, 18:301-314, 2015.
[17] K. Dzhaparidze and H. Van Zanten, A series expansion of fractional Brownian motion, Probab. Theory Related Fields, 130(1):39-55, 2004.
[18] E. Hashorva, S. Kobelkov, and V. I. Piterbarg, On maximum of Gaussian process with unique maximum point of its variance, arXiv:1901.09753 (2019).
[19] Ch. Houdre and J. Villa, An example of infinite dimensional quasi-helix, in: Stochastic Models (Mexico City, 2002), Contemp. Math. 336, Amer. Math. Soc., 2003, 195-202.
[20] D. G. Konstant and V. I. Piterbarg, Extreme values of the cyclostationary Gaussian random process, J. Appl. Probab., 30(1):82-97, 1993.
[21] J. Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc., 104(1):62-78, 1962.
[22] P. Lei and D. Nualart, A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Lett., 79(5):619-624, 2009.
[23] W. Li and Q. Shao, Lower tail probabilities for Gaussian processes, Ann. Probab., 32(1A):216-242, 2004.
[24] Z. Michna, Remarks on Pickands theorem, Probab. Math. Statist., 37:373-393, 2017.
[25] J. Pickands, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc., 145():75-86, 1969.
[26] V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr. 148, Amer. Math. Soc., 2012.
[27] V. I. Piterbarg and V. P. Prisiazhniuk, Asymptotic analysis of the probability of large excursions for a nonstationary Gaussian process, Teor. Veroyatnost. Mat. Statist. 18 (1978), 121-134 (in Russian).
[28] R. A. Vitale, The Wills functional and Gaussian processes, Ann. Probab., 24(4):2172-2178, 1996.