[1] J. Abate and W. Whitt, A unified framework for numerically inverting Laplace transforms, INFORMS J. Computing, 18(4):408-421, 2006.
[2] S. Asmussen, Stationary distributions for fluid flow models with or without Brownian noise, Comm. Statist. Stochastic Models, 11(1):21-49, 1995.
[3] F. Avram, M. R. Pistorius, and M. Usabel, The two barriers ruin problem via a Wiener Hopf decomposition approach, An. Univ. Craiova Ser. Mat. Inform., 30(1):38-44, 2003.
[4] M. T. Barlow, L. C. G. Rogers, and D. Williams, WienerâHopf factorization for matrices, Séminaire de probabilités de Strasbourg, 14:324-331, 1980.
[5] D. Hainaut, Y. Shen, and Y. Zeng, How do capital structure and economic regime affect fair prices of bankâs equity and liabilities? Ann. Operations Res. 262 (2018), 519-545.
[6] P. Hieber, First-passage times of regime switching models, Statist. Probab. Lett., 92:148-157, 2014.
[7] Z. Jiang and M. R. Pistorius, On perpetual American put valuation and first-passage in a regime-switching model with jumps, Finance Stoch., 12(3):331-355, 2008.
[8] Z. Jiang and M. R. Pistorius, Optimal dividend distribution under Markov regime switching, Finance Stoch., 16(3):449-476, 2012.
[9] A. Jobert and L. C. G. Rogers, Option pricing with Markov-modulated dynamics, SIAM J. Control Optim., 44(6):2063-2078, 2006.
[10] J. Kennedy and D. Williams, Probabilistic factorization of a quadratic matrix polynomial, Math. Proc. Cambridge Philos. Soc., 107(3):591-600, 1990.
[11] R. R. London, H. P. McKean, L. C. G. Rogers, and D. Williams, A martingale approach to some Wiener-Hopf problems. I, II, in: Seminar on Probability, XVI, Lecture Notes in Math. 920, Springer, Berlin, 1982, 41â67, 68â90.
[12] A. Mijatović and M. R. Pistorius, Exotic derivatives under stochastic volatility models with jumps, in: Advanced Mathematical Methods for Finance, Springer, Heidelberg, 2011, 455-508.
[13] D. Mitra, Stochastic theory of a fluid model of producers and consumers coupled by a buffer, Adv. Appl. Probab., 20(3):646-676, 1988.
[14] M. Nilsson, Hitting time in Erlang loss systems with moving boundaries, Queueing Systems, 78(3):455-508, 2014.
[15] L. C. G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains, Ann. Appl. Probab., 4(2):390-413, 1994.
[16] L. C. G. Rogers and Z. Shi, Computing the invariant law of a fluid model, J. Appl. Probab., 31(4):885-896, 1994.
[17] R. Syski, Passage Times for Markov Chains, IOS Press, Amsterdam, 1992.
[18] D. V. Widder, The Laplace Transform, Princeton Math. Ser. 6, Princeton Univ. Press, Princeton, NJ, 1941.
[19] D. Williams, Some aspects of Wiener-Hopf factorization, Philos. Trans. Roy. Soc. London Ser. A, 335(1639):593-608, 1991.
[20] D. Williams, A new look at âMarkovianâ Wiener-Hopf theory, in: Séminaire de probabilités XLI, Lecture Notes in Math. 1934, Springer, Berlin, 2008, 349-369.
[21] H. Xing and Y. Chen, Dependence of structural breaks in rating transition dynamics on economic and market variations, Rev. Econom. Finance, 11:1-18, 2018.
[22] G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, Springer, New York, 2013.