[1] Bauer, H., Probability Theory, de Gruyter, Berlin, 1996.
[2] Böttcher, B., Construction of time inhomogeneous Markov processes via evolution equations using pseudo-differential operators, J. London Math. Soc. 78 (2008), 605-621.
[3] Böttcher, B., Schilling, R. L., Wang, J., Lévy-type Processes: Construction, Approximation and Sample Path Properties, Lecture Notes in Math. 2099, Springer, Berlin, 2013.
[4] Bray, L., Jacob, N., Some considerations on the structure of transition densities of symmetric Lévy processes, Comm. Stoch. Anal. 10 (2016), 405-420.
[5] Hoh, W., A symbolic calculus for pseudo-differential operators generating Feller semigroups, Osaka J. Math. 35 (1998), 798-820.
[6] Jacob, N., A class of Feller semigroups generated by pseudo-differential operators, Math. Z. 215 (1994), 151-166.
[7] Jacob, N., Knopova, V., Landwehr, S., Schilling, R., A geometric interpretation of the transition density of a symmetric Lévy process, Sci. China Math. 55 (2012), 1099-1126.
[8] Jacob, N., Rhind, E. O. T., Aspects of micro-local analysis and geometry in the study of Lévy-type generators, in: Open Quantum Systems, Birkhäuser/Springer, 2019, 77-140.
[9] Knopova, V., Schilling, R., A note on the existence of transition probability densities for Lévy processes, Forum Math. 25 (2013), 125-149.
[10] Kühn, F., Lévy-Type Processes: Moments, Construction and Heat Kernel Estimates, Lecture Notes in Math. 2187, Springer, Berlin, 2017.
[11] Laue, G., Riedel, M., Roßberg, H.-J., Unimodale und positiv definite Dichten, B.G. Teubner, Stuttgart, 1999.
[12] Lewis, T., Probability functions which are proportional to characteristic functions and the infinite divisibility
of the von Mises distribution, in: Perspectives in Probability and Statistics, Papers in honour of M. S. Bartlett on the occasion of his sixty-fifth birthday (ed. by J. Gani), Academic Press, London, 1976, 19â28.
[13] Pitman, J., Yor, M., Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math. 55 (2003), 292-330.
[14] Sato, K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999.
[15] Schilling, R. L., Growth and Hölder conditions for the sample paths of Feller processes, Probab. Theory Related Fields 112 (1998), 565-611.
[16] Schilling, R. L., Song, R., Vondracek, Z., Bernstein Functions, 2nd ed., de Gruyter, Berlin, 2012.
[17] Tanabe, H., Equations of Evolution, Pitman, Boston, MA, 1979.
[18] Zhang, R., Fundamental solutions of a class of pseudo-differential operators with time-dependent negative definite symbols, PhD thesis, Swansea Univ., Swansea, 2011.