[1] J. K. Baksalary A. Markiewicz, Admissible linear estimators in the general GaussâMarkov model, J. Statist. Plann. Inference 19 (1988), 349-359.
[2] J. K. Baksalary, A. Markiewicz C. R. Rao, Admissible linear estimation in the general GaussâMarkov model with respect to an arbitrary
quadratic risk function, J. Statist. Plann. Inference 44 (1995), 341-347.
[3] A. Cohen, All admissible estimates of the mean vector, Ann. Math. Statist. 37 (1966), 458-463.
[4] A. S. Goldberger, Best linear unbiased prediction in the generalized linear regression model, J. Amer. Statist. Assoc. 57 (298) (1962), 369-375.
[5] J. Groß A. Markiewicz, Characterization of admissible linear estimators in the linear model, Linear Algebra Appl. 388 (2004), 239-248.
[6] D. A. Harville, Extension of the GaussâMarkov theorem to include the estimation of random effects, Ann. Statist. 2 (1976), 384-395.
[7] C. R. Henderson, Estimation of genetic parameters (abstract), Ann. Math. Statist. 21 (1950), 309-310.
[8] C. R. Henderson, Selection index and expected genetic advance, in: Statistical Genetics and Plant Breeding, NAS-NRC 982, Washington, 1963, 141-163.
[9] C. R. Henderson, Best linear unbiased estimation and prediction under a selection model, Biometrics 31 (1975), 423-447.
[10] J. Jiang, A derivation of BLUP-Best linear unbiased predictor, Statist. Probab. Lett. 32 (1997), 321-324.
[11] A. I. Khuri, T. Mathew B. K. Sinha, Statistical Tests for Mixed Linear Models, Wiley, New York, 1998.
[12] W. Klonecki S. Zontek, On the structure of admissible linear estimators, J. Multivariate Anal. 24 (1988), 11-30.
[13] L. R. LaMotte, Admissibility in linear estimation, Ann. Statist. 10 (1982), 245-255.
[14] L. R. LaMotte, Admissibility, unbiasedness, and nonnegativity in the balanced, random, one-way ANOVA model, in: T. CaliĹski
and W. Klonecki (eds.), Linear Statistical Inference (PoznaĹ, 1984), Springer, Berlin, 1985, 184-199.
[15] L. R. LaMotte, On limits of uniquely best linear estimators, Metrika 45 (1997), 197-211.
[16] X. Q. Liu, J. Y. Rong X. Y. Liu, Best linear unbiased prediction for linear combinations in general mixed linear models, J. Multivariate Anal. 99 (2008), 1503-1517.
[17] T. Mathew, C. R. Rao B. K. Sinha, Admissible linear estimation in singular linear models, Comm. Statist. Theory Methods 13 (1984), 3033-3045.
[18] C. R. Rao, Estimation of parameters in a linear model, Ann. Statist. 4 (1976), 1023-1037.
[19] C. R. Rao, Estimation in linear models with mixed effects: a unified theory, in: Proc. Second International Tampere Conference in Statistics, Dept. Math. Sci., Univ. of Tampere, 1987, 73-98.
[20] H. Sahai M. M. Ojeda, Analysis of Variance for Random Models. Volume 1: Balanced Data, Theory, Methods, Applications and Data Analysis, Birkhäuser, Boston, MA, 2004.
[21] W. Shiqing, M. Ying F. Zhijun, Integral expression form of admissible linear estimators of effects in linear mixed models, in: Proc.2010 International
Conference on Computing, Control and Industrial Engineering, IEEE, Wuhan, 2010, 56-60.
[22] C. Stępniak, On admissible estimators in a linear model, Biometrical J. 26 (1984), 815-816.
[23] C. Stępniak, A complete class for linear estimation in a general linear model, Ann. Inst. Statist. Math. A 39 (1987), 563-573.
[24] C. Stępniak, Admissible invariant esimators in a linear model, Kybernetika 50 (2014), 310-321.
[25] E. Synówka-Bejenka S. Zontek, A characterization of admissible linear estimators of fixed and random effects in linear models, Metrika 68 (2008), 157-172.
[26] E. Synówka-Bejenka S. Zontek, On admissibility of linear estimators in models with finitely generated parameter space, Kybernetika 52 (2016), 724-734.
[27] Y. Tian, A new derivation of BLUPs under random-effects model, Metrika 78 (2015), 905-918.
[28] S. Zontek, On characterization of linear admissible estimators: an extension of a result due to C. R. Rao, J. Multivariate Anal. 23 (1987), 1-12.
[29] S. Zontek, Admissibility of limits of the unique locally best linear estimators with application to variance components models, Probab. Math. Sta