[1] S. Albeverio, Z. Brzeźniak, J.-L. Wu, Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients,
J. Math. Anal. Appl. 371 (2010), 309-322.
[2] D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Cambridge Univ. Press, 2009.
[3] A. Arapostathis, A. Biswas L. Caffarelli, On a class of stochastic differential equations with jumps and its properties, arXiv:1401.6198v4 (2015).
[4] K. Bichteler, J.-B. Gravereaux J. Jacod, Malliavin Calculus for Processes with Jumps, Stochastics Monographs, 2. Gordon and Breach, New York, 1987.
[5] Z. Brzeźniak, W. Liu J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl. 17 (2014), 283-310.
[6] G. Da Prato, D. Gątarek J. Zabczyk, Invariant measures for semilinear stochastic equations, Stochastic Anal. Appl. 10 (1992), 387-408.
[7] I. Gyöngy N. V. Krylov, On stochastic equations with respect to semimartingales. I, Stochastics 4 (1980/81), 1-21.
[8] R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
[9] N. Ikeda S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd ed., North-Holland and Kodansha, 1989.
[10] T. Komorowski A. Walczuk, Central limit theorem for Markov processes with spectral gap in the Wasserstein metric, Stochastic Process. Appl. 122 (2012), 2155-2184.
[11] N. V. Krylov B. L. Rozovskii, Stochastic evolution equations, J. Soviet Math. 16 (1981), 1233–1277.
[12] W. Liu J. M. Tölle, Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts, Electron. Comm. Probab. 16 (2011), 447-457.
[13] Y. Ma, Transportation inequalities for stochastic differential equations with jumps, Stochastic Process. Appl. 120 (2010), 2-21.
[14] M. B. Majka, Transportation inequalities for non-globally dissipative SDEs with jumps via Malliavin calculus and coupling, Ann. Inst. Henri Poincaré Probab. Statist. 55 (2019), 2019-2057.
[15] J.-L. Menaldi M. Robin, Invariant measure for diffusions with jumps, Appl. Math. Optim. 40 (1999), 105-140.
[16] C. Prét, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, Berlin, 2007.
[17] J. Shao C. Yuan, Transportation-cost inequalities for diffusions with jumps and its application to regime-switching processes, J. Math. Anal. Appl. 425 (2015), 632-654.
R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, New York, 2005.
[19] J. Wang, \(L^p\)-Wasserstein distance for stochastic differential equations driven by Lévy processes, Bernoulli 22 (2016), 1598-1616.
[20] L. Wu, Transportation inequalities for stochastic differential equations of pure jumps, Ann. Inst. Henri Poincaré Probab. Statist. 46 (2010), 465-479.