D. Alonso-Gutiérrez, J. Prochno, and C. Thäle, Large deviations for high-dimensional random projections
of lpn-balls, Adv. Appl. Math. 99 (2018), 1-35.
F. Barthe, O. Guédon, S. Mendelson, and A. Naor, A probabilistic approach to the geometry of
the lpn-ball, Ann. Probab. 33 (2005), 480-513.
D. Chafaï ˆ, O. Guédon, G. Lecué, and A. Pajor, Interactions
between Compressed Sensing Random Matrices and High Dimensional
Geometry, Soc. Math. France, 2012.
A. Dembo and O. Zeitouni, Large Deviations: Techniques and Applications, Stochastic
Modelling Appl. Probab. 38, Springer, Berlin, 2010 (corrected reprint of the second (1998) edition).
S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Appl. Numer. Harmonic Anal., Birkhäuser/Springer, New York, 2013.
N. Gantert, S. S. Kim, and K. Ramanan, Large deviations for random projections of lp
balls, Ann. Probab. 45 (2017), 4419-4476.
A. Hinrichs, D. Krieg, E. Novak, J. Prochno, and M. Ullrich, Random sections of ellipsoids and the power of random information,
Trans. Amer. Math. Soc. 374 (2021), 8691-8713.
A. Hinrichs, J. Prochno, and M. Sonnleitner, Random sections of lp-ellipsoids,
optimal recovery and Gelfand numbers of diagonal operators, arXiv:2109.14504 (2021).
G. J. O. Jameson, Inequalities for gamma function ratios, Amer. Math. Monthly 120 (2013), 936-940.
Z. Kabluchko and J. Prochno, Large deviations for random matrices in the orthogonal group and Stiefel manifold with
applications to random projections of product distributions, arXiv:2110.12977 (2021).
Z. Kabluchko, J. Prochno, and C. Thäle, High-dimensional limit theorems for random vectors
in lpn-balls, Commun. Contemp. Math.
21 (2019), art. 1750092, 30 pp.
Z. Kabluchko, J. Prochno, and C. Thäle, Sanov-type large deviations
in Schatten classes, Ann. Inst. H. Poincaré Probab. Statist. 56 (2019), 928-953.
Z. Kabluchko, J. Prochno, and C. Thäle, High-dimensional limit theorems for random vectors
in lpn-balls. II,
Commun. Contemp. Math. 23 (2021), art. 1950073, 35 pp.
T. Kaufmann and C. Thäle, Weighted p-radial distributions on Euclidean
and matrix p-balls with applications to large deviations, J. Math. Anal. Appl. 515 (2022),
no. 1, art. 126377, 41 pp.
S. S. Kim and K. Ramanan, Large deviation principles induced by the Stiefel manifold, and random multi-dimensional
projections, Adv. in Appl. Math. 134 (2022), art. 102306, 64 pp.
B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007), 91-131.
B. Klartag, Power-law estimates for the central limit theorem for convex sets, J. Funct. Anal. 245 (2007), 284-310.
D. Krieg and M. Sonnleitner, Random points are optimal for the approximation of Sobolev functions, arXiv:2009.11275 (2020).
J. Prochno, C. Thäle, and N. Turchi, Geometry
of lpn-balls: Classical results and recent
developments, in: High Dimensional Probability VIII, Progr. Probab. 74, Birkhäuser, 2019, 121-150.
|