R. A. Carmona and S. A. Molchanov, Stationary parabolic Anderson models and intermittency,
Probab. Theory Related Fields 102 (1995), 433-453.
L. Chaumont and G. Uribe Bravo, Markovian bridges: Weak continuity and pathwise constructions,
Ann. Probab. 39 (2011), 609-647.
X. Chen, Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related
parabolic Anderson models, Ann. Probab. 40 (2012), 1436-1482.
Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes
on d-sets, Stoch. Process. Appl. 108 (2003), 27-62.
Z.-Q. Chen, P. Kim and T. Kumagai, Global heat kernel estimates for symmetric jump processes,
Trans. Amer. Math. Soc. 363 (2011), 5021-5055.
Z.-Q. Chen, P. Kim and R. Song, Heat kernel estimates for Dirichlet fractional Laplacian,
J. Eur. Math. Soc. 124 (2010), 1307-1329.
M. D. Donsker and S. R. S. Varadhan, Asymptotics for the Wiener sausage,
Comm. Pure Appl. Math. 28 (1975), 525-565.
R. Fukushima, From the Lifshitz tail to the quenched survival asymptotics in the trapping
problem, Electron. Comm. Probab. 14 (2009), 435-446.
R. Fukushima, Second order asymptotics for Brownian motion in a heavy tailed Poissonian
potential, Markov Process. Related Fields 17 (2011), 447-482.
J. P. Gärtner, W. König and S. A. Molchanov, Almost sure asymptotics for the continuous
parabolic Anderson model, Probab. Theory Related Fields 118 (2000), 547-573.
K. Kaleta and K. Pietruska-Pałuba, The quenched asymptotics of
nonlocal Schrödinger operators with Poissonian potentials, Potential Anal. 52 (2020), 161-202.
Y. Kasahara, Tauberian theorems of exponential type, J. Math. Kyoto Univ. 18 (1978), 209-219.
K.-Y. Kim and P. Kim, Two-sided estimates for the transition densities of symmetric Markov
processes dominated by stable-like processes in C1,η
open sets, Stoch. Process. Appl. 124 (2014), 3055-3083.
W. König, The Parabolic Anderson Model: Random Walk in Random Potential,
Birkhäuser, Cham, 2016.
V. Knopova and R. L. Schilling, A note on the existence of transition probability densities
for Lévy processes, Forum Math. 25 (2013), 125-149.
H. Ôkura, On the spectral distributions of certain integro-differential operators with
random potential, Osaka J. Math. 16 (1979), 633-666.
H. Ôkura, Some limit theorems of Donsker–Varadhan type for Markov processes
expectations, Z. Wahrsch. Verw. Gebiete 57 (1981), 419-440.
H. Ôkura, An asymptotic property of a certain Brownian motion expectataion for
large time, Proc. Japan Acad. Ser. A. Math. Sci. 57 (1981), 155-159.
L. A. Pastur, The
behavior of certain Wiener integrals as t → ∞ and the density of states
of Schrödinger equations with random potential, Teoret. Mat. Fiz. 32 (1977), 88-95 (in Russian).
A.-S. Sznitman, Brownian asymptotics in a Poisson environment, Probab. Theory
Related Fields 95 (1993), 155-174.
A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer, Berlin, 1998.
|