B. Böttcher, R. L. Schilling and J. Wang, Lévy-Type Processes:
Construction, Approximation and Sample Path Properties, Lecture
Notes in Math. 2099, Springer, Berlin, 2014.
C. Deng and R. L. Schilling, On shift Harnack inequalities
for subordinate semigroups and moment estimates for éLvy
processes, Stoch. Process. Appl.
125 (2015), 3851-3878.
T. Fujiwara, On the exponential moments of additive
processes, J. Stoch. Anal. 2
(2021), art. 11, 21 pp.
A. Hulanicki, A class of convolution semi-groups of
measures on a Lie group, in: A. Weron (ed.),
Probability Theory on Vector Spaces, Lecture Notes in
Math. 828, Springer, Berlin 1980, 82-101.
N. Jacob, Pseudo Differential Operators and Markov Processes.
Vol. 1, Imperial College Press, London, 2001.
D. Khoshnevisan and R. L. Schilling, From Lévy-Type Processes to
Parabolic SPDEs, Adv. Courses Math. CRM Barcelona, Birkhäuser,
Cham, 2017.
M. J. Klass and M. Yang, Maximal inequalities for additive
processes, J. Theor. Probab. 25
(2012), 981-1012.
F. Kühn, Existence and estimates of moments for Lévy-type
processes, Stoch. Process. Appl.
127 (2017), 1018-1041.
F. Kühn and R. L. Schilling, Strong convergence of the
EulerâMaruyama approximation for a class of Lévy-driven
SDEs, Stoch. Process. Appl. 129
(2019), 2654-2680.
E. Lukacs, Characteristic Functions, 2nd ed., Griffin,
London, 1970.
D. Revuz na M. Yor, Continuous Martingales and Brownian
Motion, 3rd ed., Springer, Berlin, 1999.
K. Sato, Lévy Processes and Infinitely Divisible
Distributions, rev. ed., Cambridge Univ. Press, Cambridge,
2013.
R. L. Schilling, Measures, Integrals and Martingales, 2nd
ed., Cambridge Univ. Press, Cambridge, 2017.
R. L. Schilling, Brownian Motion, 3rd ed., De Gruyter,
Berlin, 2021.
E. Siebert, Continuous convolution semigroups integrating a
submultiplicative function, Manuscripta Math.
37 (1982), 383-391.
H. Zhang, M. Zhao and J. Ying,
α -transience and α-recurrence for random walks and
Lévy processes, Chinese Ann. Math.
26B (2005), 127-142. |