F. Aurzada, V. Betz and M. Lifshits, Breaking a chain of interacting Brownian particles:
a Gumbel limit theorem, Theor. Probab. Appl. 66 (2021), 184-208.
F. Aurzada, V. Betz and M. Lifshits, Universal break law for a class of models of polymer rupture,
J. Phys. A 54 (2021), 28 pp.
S. M. Berman, Limit theorems for the maximum term in stationary sequences, Ann. Math. Statist. 35 (1964), 502-516.
K. Dębicki, E. Hashorva and L. Ji, Parisian ruin of self-similar gaussian risk processes,
J.A Appl. Probab. 52 (2015), 688-702.
K. Dębicki and P. Liu, The time of ultimate recovery in Gaussian risk model, Extremes 22 (2019), 499-521.
J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 2nd ed., Krieger, Malabar, FL, 1987.
J. Hüsler and V. I. Piterbarg, A limit theorem for the time of ruin in a Gaussian ruin problem,
Stochastic Process. Appl. 118 (2008), 2014-2021.
J. Hüsler and Y. Zhang, On first and last ruin times of Gaussian processes, Statist. Probab. Lett. 78 (2008), 1230-1235.
N. Karagodin and M. Lifshits, On the distribution of the last exit time over a slowly growing linear boundary
for a Gaussian process, Theor. Probab. Appl. 66 (2021), 337-347.
M. Lifshits, Gaussian Random Functions, Math. Appl. 322, Kluwer, Dordrecht, 1995.
Z. Michna, Remarks on Pickands’ theorem, Probab. Math. Statist. 37 (2017), 373-393.
Ch. Paroissin and L. Rabehasaina, First and last passage times of spectrally positive Lévy processes
with application to reliability, Methodol. Comput. Appl. Probab. 17 (2015), 351-372.
J. Pickands III, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), 75-86.
V. Piterbarg, Twenty Lectures about Gaussian Processes, Atlantic Financial Press, London, 2015.
P. Salminen, On the first hitting time and the last exit time for a Brownian Motion to/from a moving boundary,
Adv. Appl. Probab. 20 (1988), 411-426.
|