UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 42, Fasc. 2,
pages 195 - 217
DOI: 10.37190/0208-4147.00043
Published online 14.10.2022
 

A limit theorem for the last exit time over a moving nonlinear boundary for a Gaussian process

N. Karagodin

Abstract: We prove the convergence of the distribution of the scaled last exit time over a slowly moving nonlinear boundary for a class of Gaussian stationary processes. The limit is a double exponential (Gumbel) distribution.

2010 AMS Mathematics Subject Classification: Primary 60G10; Secondary 60F05.

Keywords and phrases: last exit time, nonlinear boundary, Gaussian process, limit theorem, double exponential law.

F. Aurzada, V. Betz and M. Lifshits, Breaking a chain of interacting Brownian particles: a Gumbel limit theorem, Theor. Probab. Appl. 66 (2021), 184-208.

F. Aurzada, V. Betz and M. Lifshits, Universal break law for a class of models of polymer rupture, J. Phys. A 54 (2021), 28  pp.

S. M. Berman, Limit theorems for the maximum term in stationary sequences, Ann. Math. Statist. 35 (1964), 502-516.

K. Dębicki, E. Hashorva and L. Ji, Parisian ruin of self-similar gaussian risk processes, J.A Appl. Probab. 52 (2015), 688-702.

K. Dębicki and P. Liu, The time of ultimate recovery in Gaussian risk model, Extremes 22 (2019), 499-521.

J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 2nd ed., Krieger, Malabar, FL, 1987.

J. Hüsler and V. I. Piterbarg, A limit theorem for the time of ruin in a Gaussian ruin problem, Stochastic Process. Appl. 118 (2008), 2014-2021.

J. Hüsler and Y. Zhang, On first and last ruin times of Gaussian processes, Statist. Probab. Lett. 78 (2008), 1230-1235.

N. Karagodin and M. Lifshits, On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process, Theor. Probab. Appl. 66 (2021), 337-347.

M. Lifshits, Gaussian Random Functions, Math. Appl. 322, Kluwer, Dordrecht, 1995.

Z. Michna, Remarks on Pickands’ theorem, Probab. Math. Statist. 37 (2017), 373-393.

Ch. Paroissin and L. Rabehasaina, First and last passage times of spectrally positive Lévy processes with application to reliability, Methodol. Comput. Appl. Probab. 17 (2015), 351-372.

J. Pickands III, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), 75-86.

V. Piterbarg, Twenty Lectures about Gaussian Processes, Atlantic Financial Press, London, 2015.

P. Salminen, On the first hitting time and the last exit time for a Brownian Motion to/from a moving boundary, Adv. Appl. Probab. 20 (1988), 411-426.

Download:    Abstract    Full text