UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 42, Fasc. 1,
pages 23 - 39
DOI: 10.37190/0208-4147.00010
Published online 1.8.2022
 

Urbanik type subclasses of free-infinitely divisible transforms

Z. J. Jurek

Abstract: For the class of free-infinitely divisible transforms we introduce three families of increasing Urbanik type subclasses. They begin with the class of free-normal transforms and end up with the whole class of free-infinitely divisible transforms. Those subclasses are derived from the ones of classical infinitely divisible measures for which random integral representations are known. Special functions like Hurwitz--Lerch, polygamma and hypergeometric functions appear in kernels of the corresponding integral representations.

2010 AMS Mathematics Subject Classification: Primary 60E07, 60E10, 60H05 ; Secondary 33B15, 33C05.

Keywords and phrases: characteristic function, infinite divisibility, selfdecomposability, s-selfdecomposability, Lévy--Khinchin formula, free-infinite divisibility, Nevanlinna--Pick functions, polygamma function, hypergeometric function.

O. E. Barndorff-Nielsen and S. Thorbjorsen, Classical and free infinite divisibility and Lévy processes, in: Lecture Notes in Math. 1866, Springer, 2006, 33-159.

H. Bercovici and D. V. Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), 733-773.

R. C. Bradley and Z. J. Jurek, The strong mixing and the selfdecomposability, Statist. Probab. Lett. 84 (2014), 67-71.

W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1966.

B. V. Gnedenko and A. N. Kolomogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Cambridge, MA, 1954.

I. S. Gradshteyn and M. Ryzhik, Table of Integrals, Series, and Products, 5th ed., Academic Press, New York, 1994.

L. Jankowski and Z. J. Jurek, Remarks on restricted Nevanlinna transforms, Demonstratio Math. 45 (2012), 297-307.

Z. J. Jurek, Limit distributions for sums of shrunken random variables, in: Second Vilnius Conf. Probab. Theor. Math. Statistics, Abstracts of Communications 3 (1977), 95-96.

Z. J. Jurek, Limit distributions for sums of shrunken random variables, Dissertationes Math. 185 (1981), 46 pp.

Z. J. Jurek, Limit distributions and one-parameter groups of linear operators on Banach spaces, J. Multivariate Anal. 13 (1983), 578-604.

Z. J. Jurek, The classes Lm(Q) of probability measures on Banach spaces, Bull. Polish Acad. Sci. Math. 31 (1983), 51-62.

Z. J. Jurek, Relations between the s-selfdecomposable and selfdecomposable measures, Ann. Probab. 13 (1985), 592-608; see also www.math.uni.wroc.pl/~zjjurek/Conjecture.pdf.

Z. J. Jurek, Random integral representations for classes of limit distributions similar to Lévy class L0, Probab. Theory Related Fields 78 (1988), 473-490.

Z. J. Jurek, Random integral representations for classes of limit distributions similar to Lévy class L0. II, Nagoya Math. J. 114 (1989), 53-64.

Z. J. Jurek, Random integral representation hypothesis revisited: new classes of s-selfdecomposable laws, in: Abstract and Applied Analysis (Hanoi, 2002), World Sci., Singapore, 2004, 479-498; see also www.math.uni.wroc.pl/~zjjurek/Hanoi2002.pdf.

Z. J. Jurek, Cauchy transforms of measures viewed as some functionals of Fourier transforms, Probab. Math. Statist. 26 (2006), 187-200.

Z. J. Jurek, Random integral representations for free-infinitely divisible and tempered stable distributions, Statist. Probab. Lett. 77 (2007), 417-425.

Z. J. Jurek, On a method of introducing free-infinitely divisible probability measures, Demonstratio Math. 49 (2016), 235-251.

Z. J. Jurek, Remarks on compositions of some random integral mappings, Statist. Probab. Lett. 137 (2018), 277-282.

Z. J. Jurek, On a relation between classical and free infinitely divisible transforms, Probab. Math. Statist. 40 (2020), 349-367.

Z. J. Jurek and J.A. D. Mason, Operator-Limit Distributions in Probability Theory, Wiley, New York, 1993.

Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Z. Wahrsch. Verw. Gebiete 62 (1983), 247-262.

M. Loeve, Probability Theory, 3rd ed., Van Nostrand, Princeton, 1963.

K. Urbanik, Slowly varying sequences of random variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 679-682.

K. Urbanik, Limit laws for sequences of normed sums satisfying some stability conditions, in: Proc. 3rd Internat. Sympos. on Multivariate Analysis (Dayton, OH, 1972), Academic Press, 1973; see also www.math.uni.wroc.pl/~zjjurek/urb-limitLawsOhio1973.pdf.

D. V. Voiculescu, Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), 323-346.

Download:    Abstract    Full text