UNIVERSITY
OF WROCŁAW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 43, Fasc. 2,
pages 165 - 184
DOI: 10.37190/0208-4147.00129
Published online 20.10.2023
 

Uniform convergence rates of skew-normal extremes

Qian Xiong
Zuoxiang Peng
Saralees Nadarajah

Uniform Convergence of Skew-Normal Extremes

Let \( M_n = \max(X_1, \ldots, X_n) \) denote the partial maximum of an independent and identically distributed skew-normal random sequence. In this paper, the rate of uniform convergence of skew-normal extremes is derived. It is shown that with optimal normalizing constants, the convergence rate of \( a_n^{-1} \left(M_{n} - b_n\right) \) to its ultimate extreme value distribution is proportional to \(\frac{1}{2}\).

2010 AMS Mathematics Subject Classification: Primary 60G70; Secondary 60F05.

Keywords and phrases: extreme value distribution, rate of uniform convergence, skew-normal distribution.

Download:        Full text