Cumulative Parisian ruin probability for two-dimensional
Brownian risk model
Abstract:
Let (W1(s),W2(t)),
s,βtββ₯β0, be a
bivariate Brownian motion with standard Brownian motion marginals and
constant correlation Οβββ(β1,1). We derive the exact
asymptotics as $u \to \IF$ for the
cumulative Parisian ruin probability $$\pk*{\begin{array}{@{\,}l@{\,}}\int_{[0,1]}
\mathbf{1}(W_1(s)-c_1s>u)\,ds>H_1(u) \vspace*{2pt}\\ \int_{[0,1]}
\mathbf{1}(W_2(t)-c_2t>au)\,dt>H_2(u)\end{array}}$$ for
c1,βc2ββββ,βaβββ(0,β1]
and suitably adjusted H1(u),βH2(u).
============================
Let (W1(s),W2(t)),
s,βtββ₯β0, be a
bivariate Brownian motion with standard Brownian motion marginals and
constant correlation Οβββ(β1,1). We derive the exact
asymptotics as $u \to \IF$ for the
cumulative Parisian ruin probability $$\pk*{\begin{array}{@{\,}l@{\,}}\int_{[0,1]}
\mathbf{1}(W_1(s)-c_1s>u)\,ds>H_1(u) \vspace*{2pt}\\ \int_{[0,1]}
\mathbf{1}(W_2(t)-c_2t>au)\,dt>H_2(u)\end{array}}$$ for
c1,βc2ββββ,βaβββ(0,β1]
and suitably adjusted H1(u),βH2(u).
2010 AMS Mathematics Subject Classification: Primary 60G15; Secondary 60G70.
Keywords and phrases: multidimensional Brownian motion, stationary random fields, extremes.