Expansions for moments of logarithmic skew-normal extremes
X. Liao
Z. Peng
S. Nadarajah
Abstract:
Liao, Peng and Nadarajah [ J. Appl. Probab. 50 (2013), 900--907]
derived asymptotic expansions for
the partial maximum of a random sample from the logarithmic skew-normal distribution.
Here, we derive asymptotic expansions
for moments of the partial maximum using optimal norming constants.
These expansions can be used to deduce convergence rates
of moments of the normalized maxima to the moments
of the corresponding extreme value distribution.
A numerical study is made to compare the actual values
of moments with their asymptotics,
which shows that the
convergence is exceedingly slow,
and adjustment is needed whenever we
use the limits to replace
moments of the partial maximum.
2010 AMS Mathematics Subject Classification: Primary 62E20, 60G70; Secondary 60F15, 60F05.
Keywords and phrases: expansions of moment, extreme value distribution,
logarithmic skew-normal distribution, maximum.