UNIVERSITY
OF WROC£AW
 
Main Page
Contents
Online First
General Information
Instructions for authors


VOLUMES
44.1 43.2 43.1 42.2 42.1 41.2 41.1
40.2 40.1 39.2 39.1 38.2 38.1 37.2
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 39, Fasc. 14,
pages 219 - 236
DOI: 10.19195/0208-4147.39.1.14
 

STOCHASTIC COMPLEX INTEGRALS ASSOCIATED WITH HOMOGENEOUS INDEPENDENTLY SCATTERED RANDOM MEASURES ON THE LINE

Kouji Yamamuro

Abstract: Complex integrals associated with homogeneous independently scattered random measures on the line are discussed. Theorems corresponding to Cauchy’s theorem and the residue theorem are given. Furthermore, the converse of Cauchy’s theorem is discussed.

2000 AMS Mathematics Subject Classification: Primary: 60E07; Secondary: 60H05.

Keywords and phrases: Stochastic integral, infinitely divisible distribution, Lévy process, complex integral.

Download:    Abstract    Full text   Abstract + References