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Abstract. We use the Stein–Chen method to prove new explicit inequalities
for the total variation, Wasserstein and local distances between the distribu-
tion of a random diagonal sum of a Bernoulli matrix and a Poisson distribu-
tion. Approximation results using a finite signed measure of higher order are
given as well. Some of our total variation bounds improve existing results
in the literature.
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1. INTRODUCTION AND REVIEW OF SOME KNOWN RESULTS

Let n ∈ N = {1, 2, 3, . . . } with n ̸= 1 and Xj,r for j, r ∈ n := {1, . . . , n}
be independent random variables with Bernoulli distributions PXj,r = Be(pj,r)
with success probabilities pj,r ∈ [0, 1]. For k, ℓ ∈ N with k ¬ ℓ, we let
ℓk̸= = {(j1, . . . , jk) | j1, . . . , jk ∈ ℓ pairwise distinct}, where we also write
(j(1), . . . , j(k)) for (j1, . . . , jk). In particular, nn̸= is the set of all permuta-
tions of n. Let π = (π(1), . . . , π(n)) be a random permutation uniformly dis-
tributed on nn̸=. We assume that all the Xj,r’s and π are independent. Let us call
(X1,π(1), X2,π(2), . . . , Xn,π(n)) a random (generalized) diagonal of the Bernoulli
matrix X = (Xj,r) and

Sn =
n∑

j=1

Xj,π(j)

the corresponding random diagonal sum. If the Xj,r’s are constants, Sn is some-
times also called the Hoeffding permutation statistic (see Barbour et al. [7]) or
Hoeffding statistic (see Adamczak et al. [1]). Further let

pj,· =
1

n

n∑
r=1

pj,r for j ∈ n, p·,r =
1

n

n∑
j=1

pj,r for r ∈ n,
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λ = ESn =
1

n

n∑
j=1

n∑
r=1

pj,r =
n∑

j=1

pj,· =
n∑

r=1

p·,r > 0, p =
λ

n
.

In this paper, we consider the approximation of the distribution PSn of Sn by a
Poisson distribution and also by a signed measure of higher order. To measure the
accuracy, we use the total variation, Wasserstein and local norms, the definitions
of which require some notation. Let Z+ = N ∪ {0}. For two sets A and B, let BA

be the set of functions from A to B. For f ∈ RZ+ , let ∆f ∈ RZ+ be defined by
∆f(m) = f(m + 1) − f(m) for m ∈ Z+ and set ∥f∥∞ = supm∈Z+

|f(m)| and
∥f∥1 =

∑
m∈Z+

|f(m)|. Let FW = {f ∈ RZ+ | ∥∆f∥∞ ¬ 1}. LetM be the
vector space of all finite signed measures on the power set of Z+ and set

M′ =
{
Q ∈M

∣∣∣ Q(Z+) = 0,
∞∑

m=0

m|fQ(m)| <∞
}
,

where fQ ∈ RZ+ with fQ(m) = Q({m}) for m ∈ Z+ is the counting density
of Q. Let

∥Q∥TV = ∥fQ∥1, ∥Q∥loc = ∥fQ∥∞,
dTV(Q1, Q2) = sup

A⊆Z+

|Q1(A)−Q2(A)|

be the total variation norm and the local norm of Q ∈ M, and the total variation
distance between Q1, Q2 ∈ M. The Wasserstein norm ∥Q∥W (sometimes also
called the Fortet–Mourier norm or Kantorovich norm) of Q ∈M′ is defined by

∥Q∥W =
∞∑

m=0

|Q(m ∪ {0})|.

It is well-known that, for Q1, Q2 ∈M and Q ∈M′,

dTV(Q1, Q2) =
1

2
∥Q1 −Q2∥TV if Q1(Z+) = Q2(Z+),

∥Q∥W = sup
f∈FW

∣∣∣∫ f dQ∣∣∣, ∥(δ1 − δ0) ∗Q∥W = ∥Q∥TV,(1.1)

where δm ∈ M is the Dirac measure at m ∈ Z+, and ∗ denotes convolution. Let
Po(t) be the Poisson distribution with mean t ∈ (0,∞).

The literature contains some explicit inequalities for the total variation distance
between PSn and the Poisson distribution with the same mean. We are not aware
of any published explicit bounds concerning the Wasserstein and local distances in
this context. However, the local distance was considered by Barbour et al. [7, The-
orem 2.10], but they used a translated Poisson distribution to improve the accuracy
of approximation and the estimate given there is not explicit, since it contains an
O-term.
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Let us discuss some total variation bounds. Chen [10, Theorem 2.1] adapted
Stein’s [22] method to prove that, for n  5,

dTV(P
Sn ,Po(λ)) ¬ 7.875min

{
1,

1√
λ

}( n∑
j=1

p2j,· +
n∑

r=1

p2·,r

)
,(1.2)

dTV(P
Sn ,Po(λ)) ¬ 22.625

1

λ

( n∑
j=1

p2j,· +
n∑

r=1

p2·,r

)
.(1.3)

Barbour and Holst [4, Theorem 7.1] and Barbour et al. [5, Theorem 4.A, p. 78] used
the Stein–Chen method and coupling to show refinements of (1.2) and (1.3) when
the matrix (pj,r) is in {0, 1}n×n. We only state the result in [5], which improves
on that in [4]. It says that

dTV(P
Sn ,Po(λ)) ¬ 1− e−λ

λ

(
n− 2

n
(λ−VarSn) +

2λ2

n

)
(1.4)

¬ 3

2

1− e−λ

λ

(
n∑

j=1

p2j,· +
n∑

r=1

p2·,r −
2λ

3n

)
.(1.5)

As mentioned in [5, Remark 4.1.3], the proof of [5, Theorem 4.A] can be adapted
to prove (1.3) in the general case (pj,r) ∈ [0, 1]n×n with constant 3/2 in place of
22.625. Our results below imply that (1.4) also holds for (pj,r) ∈ [0, 1]n×n; on the
other hand, (1.5) has to be slightly adapted (see Remark 2.4).

Under the additional assumption that pj,r = 1[−1,aj ](r) for all j, r ∈ n with
a1, . . . , an ∈ n ∪ {−1, 0}, (1.4) can be improved to

dTV(P
Sn ,Po(λ)) ¬ (1− e−λ)

(
1− VarSn

λ

)
.(1.6)

Here, for a setA, 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. We note that (1.6)
does not follow directly from (1.4) or its proof, but it can be shown again using the
Stein–Chen method [5, p. 80]. However, more can be said:

REMARK 1.1. Let (pj,r) ∈ [0, 1]n×n have (weakly) decreasing columns, that
is, pj,r  pj+1,r for all j ∈ n− 1 and r ∈ n. Then the following hold:

(1) The probability generating function ψSn(z) =
∑n

k=0 P (Sn = k)zk (z ∈ C)
of PSn has only real roots.

(2) The distribution PSn is a Bernoulli convolution, that is, it is the distribution of
the sum of n independent Bernoulli random variables.

(3) Inequality (1.6) holds and

1

14
min

{
1,

1

λ

}
(λ−VarSn) ¬ dTV(P

Sn ,Po(λ)).(1.7)
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Proof. Since ψSn(z) is equal to the permanent of the matrix (1+pj,r(z−1)) ∈
Cn×n divided by n!, (1) follows directly from the monotone column permanent
theorem (see Brändén et al. [8]). It is well-known that (1) implies (2) (see e.g.,
Pitman [14, Proposition 1]). Part (3) is a consequence of (2), [3, Theorem 1] and
[5, Remark 3.2.2]. ■

It is clear that the statement of Remark 1.1 remains valid if it is assumed that
the matrix (pj,r) has decreasing rows, that is, its transpose has decreasing columns.
The same holds for increasing columns (or rows). In particular, if pj,1 = · · · = pj,n
for all j ∈ n, then (1.6) and (1.7) hold and the distribution of Sn is a Bernoulli
convolution with success probabilities p1,1, . . . , pn,1.

Unfortunately, an inequality of the form

dTV(P
Sn ,Po(λ)) ¬ C

(
1− VarSn

λ

)
with an absolute constant C ∈ (0,∞) cannot generally hold. Indeed, if (pj,r) ∈
[0, 1]n×n is the identity matrix, then VarSn = 1 = λ and PSn ̸= Po(λ) (see, e.g.,
[5, Example 4.2.1]). Therefore, to get a general upper bound of dTV(P

Sn ,Po(λ)),
one has to enlarge 1− VarSn

λ somewhat. In this context, the following formula for
the variance of Sn is useful:

VarSn = λ−
n∑

j=1

p2j,· − γ,(1.8)

where

γ =
1

2n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(pj,r − pj,s)(pk,r − pk,s).(1.9)

For a proof, see Section 5. Further, we have

VarSn = λ− n

n− 1

(∑
j∈n

p2j,· +
∑
r∈n

p2·,r −
1

n2
∑

(j,r)∈n2

p2j,r −
λ2

n

)
(1.10)

= λ− 1

n− 1

∑
j∈n

∑
r∈n

pj,r

(
pj,· + p·,r −

pj,r
n
− p

)
,

from which it easily follows that

(1.11)
λ(1−m) ¬ VarSn ¬ λ, where

m =
n

n− 1
max

(j,r)∈n2

(
pj,· + p·,r −

pj,r
n
− p

)
¬ min

{
λ,

2n

n− 1

}
.

Identity (1.10) and the second inequality in (1.11) were proved in [5, Proposition
4.1.1] in the case (pj,r) ∈ {0, 1}n×n with 1

n2

∑
(j,r)∈n2 p2j,r replaced by p. The
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proof in the general case is analogous. We note that the first inequality in (1.11)
can only be useful if m < 1.

The rest of the paper is structured as follows. Sections 2 and 3 contain our main
approximation inequalities for the total variation, Wasserstein and local distances.
The proofs are given in Sections 4 and 5. In what follows, the assumptions of
Section 1 are supposed to hold unless otherwise stated.

2. RESULTS FOR THE TOTAL VARIATION DISTANCE

To state our first result, we need further quantities related to γ. Let

γ′ =
2

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(pj,r − pj,s)+(pk,s − pk,r)+,

γ′′ =
1

2n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

|pj,r − pj,s| |pk,r − pk,s|,

γ′′′ =
1

4n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(|pj,r − pj,s| − |pk,r − pk,s|)2.

Here and below, we set x+ = max {0, x} for x ∈ R. Our first result improves on
(1.4).

THEOREM 2.1. We have

dTV(P
Sn ,Po(λ)) ¬ 1− e−λ

λ
(λ−VarSn + γ′)(2.1)

=
1− e−λ

λ

( n∑
j=1

p2j,· + γ′′
)

(2.2)

=
1− e−λ

λ

( 1

n

∑
(j,r)∈n2

p2j,r − γ′′′
)
.(2.3)

Let us compare the inequality in Theorem 2.1 with (1.4). We first note that the
upper bound in Theorem 2.1 is always smaller than or equal to the right-hand side
of (1.4). However, both upper bounds are of the same order. This follows from the
next lemma.

LEMMA 2.1. LetA = λ−VarSn+γ′ andB = n−2
n (λ−VarSn)+ 2λ2

n . Then

A ¬ B ¬
(
3− 2

n

)
A.(2.4)

REMARK 2.1. In view of (2.3), we see that the bound in Theorem 2.1 is always
at most 1− e−λ.
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EXAMPLE 2.1. The right-hand side in (1.4) is not always bounded by 1 and
the second inequality in (2.4) may be an equality. To show this, let pj,r = p ∈ [0, 1]
for all j, r ∈ n. Then PSn is the binomial distribution with parameters n and p.
Further, λ = np and inequality (1.4) states that

dTV(P
Sn ,Po(np)) ¬

(
3− 2

n

)
(1− e−np)p.(2.5)

On the other hand, Theorem 2.1 gives dTV(P
Sn ,Po(np)) ¬ (1 − e−np)p. In par-

ticular, in the second inequality in (2.4) equality holds. If p > 1/3, then the upper
bound in (2.5) is greater than 1 for n large enough.

REMARK 2.2. If the matrix (pj,r) has decreasing rows, then γ′ = 0. In this
case, the inequalities in Theorem 2.1 and (1.6) are identical. We recall that (1.4)
does not imply (1.6).

REMARK 2.3. The distribution of Sn remains unchanged if we replace the ma-
trix (pj,r) with its transpose. In the case (pj,r) ∈ {0, 1}n×n, both upper bounds in
(1.4) and Theorem 2.1 remain unchanged as well; see Lemma 2.2(1) below. How-
ever, if we consider the general case (pj,r) ∈ [0, 1]n×n, the bound in Theorem 2.1
can indeed change. So, in this case, we possibly get two different inequalities, the
better of which should be used. For instance, let n = 2 and (pj,r) =

( 1 1/4
3/4 1/2

)
.

Then we have γ′ = 0, but the analogous term for the transpose of (pj,r) is equal to

2

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(pj,r − pk,r)+(pk,s − pj,s)+ =
1

16
.

Let us now collect some properties of γ′.

LEMMA 2.2.

(1) We have

γ′ ¬ 2

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

pj,r(1− pj,s)pk,s(1− pk,r).(2.6)

Here, equality holds if and only if for all j ∈ n and (r, s) ∈ n2̸= such that
(pj,r, pj,s) ∈ (0, 1)2, we have pk,r = pk,s ∈ {0, 1} for all k ∈ n \ {j}. In
particular, equality holds if in every row of the matrix (pj,r) there is at most
one entry in (0, 1).

The right-hand side of (2.6) does not change if we replace the matrix (pj,r)
with its transpose.

(2) We have

γ′ ¬ min

{
VarSn −

1

n

∑
(j,r)∈n2

pj,r(1− pj,r),
2

n
(VarSn − λ+ λ2)

}
.(2.7)
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(3) If (pj,r) ∈ {0, 1}n×n, then

γ′ =
2

n− 1

∑
(r,s)∈n2

̸=

(
p·,r −

1

n

∑
j∈n

pj,rpj,s

)(
p·,s −

1

n

∑
j∈n

pj,rpj,s

)
.

REMARK 2.4. We note that (2.1) together with the second entry in the right-
hand side of (2.7) can be used to show (1.4) in the general case pj,r ∈ [0, 1]n×n.
Further, an analogue of (1.5) can be shown: in view of (1.4), (1.10) and (1.11), we
see that

3

2

1− e−λ

λ

(
n∑

j=1

p2j,· +
n∑

r=1

p2·,r −
2

3n2
∑

(j,r)∈n2

p2j,r

)
is larger than or equal to the right-hand side of (1.4).

EXAMPLE 2.2. The left entry L and the right entry R in the minimum term in
(2.7) are not comparable in general:

If pj,r = 1 for all j, r ∈ n, then λ = n and VarSn = 0, that is L = 0 <
2(n− 1) = R.

On the other hand, if (pj,r) ∈ [0, 1]n×n is the identity matrix, then VarSn =
1 = λ; see e.g. [5, Example 4.2.1]. In this case, we have R = 2/n ¬ 1 = L.

REMARK 2.5. Let us discuss conditions for the smallness of the total variation
distance between PSn and Po(λ). For this, we consider a triangular scheme, where
n, allXj,r and pj,r, π, and in turn λ, γ′, and Sn depend on a further variable k ∈ N,
which we let go to infinity later. In order to simplify the notation, we do not indicate
the dependence on k. Barbour et al. [5, Corollary 4.A.1] showed that, under the
assumptions

(pj,r) ∈ {0, 1}n×n, lim
k→∞

λ

n
= 0 and lim inf

k→∞
λ > 0,(2.8)

we have

dTV(P
Sn ,Po(λ))→ 0 if and only if

VarSn
λ
→ 1.(2.9)

However, since (1.4) also holds in the case (pj,r) ∈ [0, 1]n×n according to Remark
2.4, the condition (pj,r) ∈ {0, 1}n×n in (2.8) can be dropped. Further, a slight
refinement of the proof in [5] shows that the condition lim infk→∞ λ > 0 in (2.8)
can be dropped as well. In fact, sufficiency follows from (1.4), and Theorem 3.A in
[5] shows that if dTV(P

Sn ,Po(λ)) → 0, then min {1, λ}
(
1 − VarSn

λ

)
→ 0. The

first and third inequalities in (1.11) imply that λ−VarSn ¬ λ2, leading to(
1− VarSn

λ

)2

¬ min {1, λ}
(
1− VarSn

λ

)
→ 0.
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So, the condition lim infk→∞ λ > 0 is not needed here. If we use (2.1), instead
of (1.4), in the sufficiency part, we obtain the following corollary without using the
assumptions in (2.8).

COROLLARY 2.1. Consider the triangular scheme above. If γ′/λ → 0, then
(2.9) holds.

REMARK 2.6. In the situation of Corollary 2.1, it follows from (2.7) and (1.11)
that γ′/λ ¬ 2λ/n. This implies that the assumption γ′/λ → 0 is weaker than
λ/n→ 0. In particular, if the matrices (pj,r) have decreasing rows, we have γ′ = 0
for all k, so that (2.9) holds.

In the next theorem, we consider the approximation of PSn by the finite signed
measure Q2 concentrated on Z+ with

Q2(A) = Po(λ)(A)− 1

2
(λ−VarSn)((δ1 − δ0)∗2 ∗ Po(λ))(A)

=
∑
k∈A

e−λ
λk

k!

(
1− 1

2λ2
(λ−VarSn)(λ

2 − 2kλ+ k(k − 1))

)(2.10)

for A ⊆ Z+. Comparable approximations in the case of independent summands
were considered by Kerstan [13], Chen [9], Shorgin [21], Barbour and Hall [3],
Roos [16] and others.

THEOREM 2.2. Let n  4. Then

dTV(P
Sn , Q2) ¬

1− e−λ

λ
ε,(2.11)

where

ε = min

{
1,

√
2

λe

}
(ε1 + ε2) +

1− e−λ

λ
ε3,

ε1 =
2

n

n∑
j=1

n∑
r=1

pj,·pj,r|λ− λ′j,r|,

ε2 =
1

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

|pj,r − pj,s| |pk,r − pk,s| |λ− λ′′j,k,r,s|,

ε3 =
2n2

(n− 2)2

(
n− 2

n− 1

n∑
j=1

p2j,· +

√
n− 1

n− 3
γ′′

)2

and, for (j, k), (r, s) ∈ n2̸=,

λ′j,r =
1

n− 1

∑
u∈n\{j}

∑
v∈n\{r}

pu,v =
1

n− 1

(
n(λ− pj,· − p·,r) + pj,r

)
,
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λ′′j,k,r,s =
1

n− 2

∑
u∈n\{j,k}

∑
v∈n\{r,s}

pu,v

=
1

n− 2

(
n(λ− pj,· − pk,· − p·,r − p·,s) + pj,r + pk,r + pj,s + pk,s

)
.

In what follows, let

ε0 =
1− e−λ

λ
(λ−VarSn + γ′) =

1− e−λ

λ

( n∑
j=1

p2j,· + γ′′
)

be the upper bound in Theorem 2.1.

REMARK 2.7. Let the assumptions of Theorem 2.2 hold. Then

ε1 ¬ 2(pmax,· + p·,max)
n∑

j=1

p2j,· ,(2.12)

ε2 ¬ 4(pmax,· + p·,max)γ
′′,

(
1− e−λ

λ

)2

ε3 ¬
2n2(n− 1)

(n− 2)2(n− 3)
ε20,(2.13)

where pmax,· = maxj∈n pj,· and p·,max = maxr∈n p·,r. These inequalities together
with (2.11) lead to the somewhat crude bound

dTV(P
Sn , Q2) ¬ 4ε0

(
min

{
1,

√
2

λe

}
(pmax,·+p·,max)+

n2(n− 1)

2(n− 2)2(n− 3)
ε0

)
,

which shows that the right-hand side of (2.11) is of a better order than ε0. The
inequalities above are easily proved by using the fact that, for (j, k), (r, s) ∈ n2̸=,

λ′j,r − λ =
λ′j,r
n
−
(
p·,r + pj,· −

pj,r
n

)
,

λ′′j,k,r,s − λ =
2

n
λ′′j,k,r,s −

(
pj,· + pk,· +

1

n

∑
u∈n\{j,k}

pu,r +
1

n

∑
u∈n\{j,k}

pu,s

)
,

giving

|λ− λ′j,r| ¬ max

{
λ′j,r
n
, p·,r + pj,· −

pj,r
n

}
¬ pmax,· + p·,max

and

|λ−λ′′j,k,r,s| ¬ max

{
2

n
λ′′j,k,r,s, pj,·+ pk,·+

1

n

∑
u∈n\{j,k}

pu,r +
1

n

∑
u∈n\{j,k}

pu,s

}
¬ 2(pmax,·+ p·,max).

In what follows,C denotes a positive absolute constant, the value of which may
change from line to line. Further, let ⌊x⌋ for x ∈ R be the largest integer ¬ x.
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COROLLARY 2.2. Let the assumptions of Theorem 2.2 hold. Then

(2.14)
∣∣∣∣dTV(P

Sn ,Po(λ))− λ−VarSn√
2πeλ

∣∣∣∣
¬ Cmin

{
1,

1

λ

}(
λ−VarSn

λ
+ ε

)
,

(2.15) dTV(P
Sn ,Po(λ)) ¬ min

{
1,

3

4λe

}
(λ − VarSn) +

1− e−λ

λ
ε.

The constant 3
4e in (2.15) is the best possible.

REMARK 2.8. Let the assumptions of Theorem 2.2 hold.
(1) Let the matrix (pj,r) have decreasing rows. Then PSn is a Bernoulli con-

volution (see Remark 1.1). Let θ = λ−VarSn
λ . Since γ′ = 0, we have

(2.16)

ε0 = (1− e−λ)θ =
1− e−λ

λ

( n∑
j=1

p2j,· + γ′′
)
,

θ =
1

λ

( n∑
j=1

p2j,· + γ′′
)
.

Further, (2.12) and (2.13) imply that

(2.17)

ε1 ¬ 4
n∑

j=1

p2j,·, ε2 ¬ 8γ′′, ε3 ¬ C(λθ)2,

ε ¬ Cλθmin

{
1,

1√
λ
+ θ

}
,

and (2.14) yields∣∣∣∣dTV(P
Sn ,Po(λ))− θ√

2πe

∣∣∣∣ ¬ Cθmin

{
1,

1√
λ
+ θ

}
.

The latter also follows from Roos [16, formula (32)] and is a generalization, resp.
refinement, of the results of Prokhorov [15, Theorem 2] (see also Barbour et al. [5,
p. 2]) and Deheuvels and Pfeifer [11, Theorem 1.2].

(2) Inequality (2.15) is a refinement of (2.1). Further, the optimality of the
constant 3

4e on the right hand side of (2.15) can be verified by using the special
example of pj,r = p for all j, r ∈ n. Here, Sn has a binomial distribution with
parameters n and p. Further, we have λ = np and VarSn = np(1− p). In view of
(2.15) and the definition of ε, we see that

dTV(P
Sn ,Po(λ)) ¬ 3

4e
p+ Cp2.(2.18)
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From [18, Theorem 2], it follows that, in the present situation,

dTV(P
Sn ,Po(λ)) ∼ 3

4e
p

as p→ 0 and np→ 1, where we use the triangular scheme as in Remark 2.5. Here
∼means that the quotient of both sides tends to 1. This shows the optimality of the
constant 3

4e in (2.18) and (2.15).

We now consider the setting in the general matching problem (see [5,
pp. 82–83]).

EXAMPLE 2.3. (1) Let m ∈ n, a1, . . . , am, b1, . . . , bm ∈ n ∪ {0} with
n =

∑m
ℓ=1 aℓ =

∑m
ℓ=1 bℓ. For ℓ ∈ {0, . . . ,m}, let Aℓ =

∑ℓ
j=1 aj and Bℓ =∑ℓ

j=1 bj , where
∑0

j=1 aj = 0 denotes the empty sum. Define pj,r = 1 for all
(j, r) ∈

⋃m
ℓ=1((Aℓ−1, Aℓ] ∩ n)× ((Bℓ−1, Bℓ] ∩ n) and pj,r = 0 otherwise. Then

pj,· =
1

n

n∑
r=1

pj,r =
bℓ
n

if ℓ ∈ m and j ∈ (Aℓ−1, Aℓ] ∩ n,

p·,r =
1

n

n∑
j=1

pj,r =
aℓ
n

if ℓ ∈ m and r ∈ (Bℓ−1, Bℓ] ∩ n,

λ =
1

n

m∑
ℓ=1

aℓbℓ,
n∑

j=1

p2j,· =
1

n2

m∑
ℓ=1

aℓb
2
ℓ ,

n∑
r=1

p2·,r =
1

n2

m∑
ℓ=1

a2ℓbℓ,

VarSn = λ− 1

n− 1

(
1

n

m∑
ℓ=1

aℓbℓ(aℓ + bℓ)− λ2 − λ
)
,

γ′ =
2

n2(n− 1)

∑
ℓ∈m2

̸=

aℓ(1)bℓ(1)aℓ(2)bℓ(2).

Therefore, (2.1) gives

(2.19) dTV(P
Sn ,Po(λ))

=
1− e−λ

λ

(
1

n− 1

(
1

n

m∑
ℓ=1

aℓbℓ(aℓ + bℓ)− λ2 − λ
)
+ γ′

)
,

slightly improving (1.4) in this case, which reads as follows:

dTV(P
Sn ,Po(λ))

¬ (1− e−λ)

(
n− 2

λn(n− 1)

(
1

n

m∑
ℓ=1

aℓbℓ(aℓ + bℓ)− λ2 − λ
)
+

2λ

n

)
(see also [5, p. 83]).
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(2) Let the assumptions in (1) hold and a1 = · · · = am = b1 = · · · = bm = d.
Then pj,· = d/n for j ∈ n, p·,r = d/n for r ∈ n, md = n, λ = d, and VarSn =

d− d(d−1)
n−1 . Further, (2.19) reduces to

(2.20) dTV(P
Sn ,Po(λ)) ¬ (1− e−d)

(
3d− 1

n
− (d− 1)(2d− 1)

n(n− 1)

)
,

which coincides with an inequality in [5, p. 82] proved by different arguments.
In the case n  4, it follows from (2.15), (2.12) and (2.13) that

(2.21) dTV(P
Sn ,Po(λ)) ¬ 3

4e

d− 1

n− 1
+4ε0

(
23/2
√
d

n
√
e

+
n2(n− 1)

2(n− 2)2(n− 3)
ε0

)
¬ 3

4e

d− 1

n− 1
+C

(
d

n

)2

,

where ε0 is the upper bound in (2.20). We note that (2.21) is better than (2.20) if
d/n is small. In particular, if d = 1, we obtain a bound of order (d/n)2.

Further, (2.12)–(2.14) imply that∣∣∣∣dTV(P
Sn ,Po(λ))− d− 1√

2πe(n− 1)

∣∣∣∣ ¬ C( d− 1

d(n− 1)
+

(
d

n

)2)
.

In particular, it follows that

dTV(P
Sn ,Po(λ)) ∼ d√

2πen
as d→∞, n→∞, and d/n→ 0.

3. RESULTS FOR WASSERSTEIN AND LOCAL DISTANCES

Let the one-point concentration of a Z+-valued random variable Z be defined by

c(Z) = sup
m∈Z+

P (Z = m).(3.1)

THEOREM 3.1. For (j, k) ∈ n2̸=, let

S(j)
n =

∑
i∈n\{j}

Xi,π(i) and S(j,k)
n =

∑
i∈n\{j,k}

Xi,π(i).

Set η1 = maxj∈n c(S
(j)
n ) and η2 = max(j,k)∈n2

̸=
c(S

(j,k)
n ). Then

∥PSn − Po(λ)∥W ¬ min

{
1,

4

3

√
2

λe

}( n∑
j=1

p2j,· + γ′′
)
,(3.2)

∥PSn − Po(λ)∥loc ¬ 2
1− e−λ

λ

(
η1

n∑
j=1

p2j,· + η2γ
′′
)
.(3.3)
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REMARK 3.1. Let the assumptions of Theorem 3.1 hold.

(1) The right-hand side of (3.2) is equal to

min

{
1,

4

3

√
2

λe

}
(λ−VarSn + γ′)

= min

{
1,

4

3

√
2

λe

}(
1

n

∑
(j,r)∈n2

p2j,r − γ′′′
)

(see Theorem 2.1). A similar statement holds with respect to (3.3) after estimating
η1 and η2 by their maximum. In comparison to (3.2), the bound in Theorem 2.1
contains an additional factor λ−1/2 as expected; for instance, see [18, Theorem 2]
in the case of Bernoulli convolutions.

(2) For practical applications of (3.3), it is necessary to use an explicit upper
bound of η1 and η2, for which we refer the reader to Roos [20, Theorem 1.7]. In
many cases, the bounds are of order λ−1/2. This would lead to an upper bound of
∥PSn − Po(λ)∥loc with an additional factor λ−1/2 in comparison with the bound
in Theorem 2.1. However, a detailed discussion is omitted.

(3) For (j, k) ∈ n2̸=, we have

c(S(j)
n ) ¬ 2c(S(j,k)

n ),

since P (S(j)
n = m) ¬ P (S

(j,k)
n ∈ {m − 1,m}) ¬ 2c(S

(j,k)
n ) for m ∈ Z+. This

implies that η1 ¬ 2η2, which can be used to estimate the right-hand side of (3.3).

For a finite set B, let |B| denote its cardinality.

THEOREM 3.2. Under the assumptions of Theorem 2.2, we have

∥PSn −Q2∥W ¬ min

{
1,

4

3

√
2

λe

}
ε,(3.4)

∥PSn −Q2∥loc ¬ 2

(
1− e−λ

λ

)2

(ε1 + ε2 + κε3),(3.5)

where, for (j, k), (r, s) ∈ n2̸=,

(T ′j,r)
B :=

∑
i∈n\({j}∪B)

Xi,πj,r(i) for B ⊆ n \ {j},

(T ′′j,k,r,s)
B :=

∑
i∈n\({j,k}∪B)

Xi,πj,k,r,s(i) for B ⊆ n \ {j, k},

the random variable πj,r, resp. πj,k,r,s, is independent of X and has uniform dis-
tribution on (n \ {r})n\{j}̸= , resp. (n \ {r, s})n\{j,k}̸= , and

κ = max

{
max

B⊆n\{j}: 1¬|B|¬2
c((T ′j,r)

B), max
B⊆n\{j,k}: 1¬|B|¬2

c((T ′′j,k,r,s)
B)

}
.
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COROLLARY 3.1. Let the assumptions of Theorem 3.2 hold. Then

(3.6) ∥PSn−Po(λ)∥W ¬ min

{
1,

1√
2λe

}
(λ−VarSn)+min

{
1,

4

3

√
2

λe

}
ε,

(3.7)

∣∣∣∣∥PSn−Po(λ)∥W−
λ−VarSn√

2πλ

∣∣∣∣ ¬ Cmin

{
1,

1√
λ

}(
λ−VarSn√

λ
+ε

)
,

(3.8) ∥PSn − Po(λ)∥loc ¬ min

{
1,

1

2

(
3

2λe

)3/2}
(λ−VarSn)

+ 2

(
1− e−λ

λ

)2

(ε1 + ε2 + κε3),

(3.9)

∣∣∣∣∥PSn − Po(λ)∥loc −
λ−VarSn

2
√
2πλ3/2

∣∣∣∣
¬ Cmin

{
1,

1

λ

}(
λ−VarSn

λ3/2
+min

{
1,

1

λ

}
(ε1 + ε2 + κε3)

)
.

The constants 1√
2e

and ( 3
2e)

3/2 in (3.6) and (3.8) are the best possible.

REMARK 3.2. Let the assumptions of Theorem 3.2 hold.

(1) Let the matrix (pj,r) have decreasing rows. Then PSn is a Bernoulli con-
volution (see Remark 1.1). Let θ = λ−VarSn

λ . Then (3.7), (2.16) and (2.17) imply
that

(3.10)
∣∣∣∣∥PSn − Po(λ)∥W −

θ
√
λ√

2π

∣∣∣∣ ¬ Cθ√λmin

{
1,

1√
λ
+ θ

}
.

Further, in many cases, we have κ ¬ Cλ−1/2 (see Remark 3.1(2)). In this case,
(3.9), (2.16) and (2.17) yield∣∣∣∣∥PSn − Po(λ)∥loc −

θ

2
√
2πλ

∣∣∣∣ ¬ C θ√
λ
min

{
1,

1√
λ
+ θ

}
.(3.11)

For (3.10) and (3.11) in the present situation, see also Roos [16, (32)].
(2) The optimality of the constants 1√

2e
and ( 3

2e)
3/2 in (3.6) and (3.8) can be

verified by using the special example of pj,r = p for all j, r ∈ n. This follows from
arguments similar to those given in Remark 2.8(2).

4. PROOFS OF MAIN RESULTS

Let t ∈ (0,∞) and Y be a Po(t)-distributed random variable. In what follows,
we use the classical Stein–Chen approach without coupling (see [9] or [5]). This
is based on the following idea: If f ∈ RZ+ , then there exists a function g :=
gt,f ∈ RZ+ such that g(0) = 0 and the Stein equation

f(m) = tg(m+ 1)−mg(m) for all m ∈ Z+(4.1)
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holds. It turns out that g is unique on N and satisfies

g(m+ 1) =
1

tpo(m, t)

m∑
j=0

po(j, t)f(j) for all m ∈ Z+,

where po(m, t) = e−t t
m

m! for m ∈ Z+. If additionally E |f(Y )| <∞ and E f(N)
= 0, then also

g(m+ 1) = − 1

tpo(m, t)

∞∑
j=m+1

po(j, t)f(j) for all m ∈ Z+.(4.2)

Now suppose that W is a Z+-valued random variable, whose distribution is to
be approximated by Po(t). Suppose further that we want to measure the approxi-
mation error in terms of differences like |Eh(W ) − Eh(Y )| for certain functions
h ∈ RZ+ , where we assume that the expectations are finite. Letting f = h−Eh(Y )
and g := gt,f , we then find from the Stein equation that

|Eh(W )− Eh(Y )| = |E f(W )| = |E(tg(W + 1)−Wg(W ))|,(4.3)

where the right-hand side has to be further estimated. To achieve this, estimates for
g are necessary, some of which are given in the following lemma.

LEMMA 4.1. Let t ∈ (0,∞) and Y be a Po(t)-distributed random variable.

(1) Let A ⊆ Z+, h = 1A ∈ RZ+ , f = h − Po(t)(A) ∈ RZ+ and gt,A := gt,f .
Then

∥gt,A∥∞ ¬ min

{
1,

√
2

te

}
, ∥∆gt,A∥∞ ¬

1− e−t

t
¬ min

{
1,

1

t

}
.(4.4)

(2) Let h ∈ FW and f = h− Eh(Y ) ∈ RZ+ . Then

∥gt,f∥∞ ¬ 1, ∥∆gt,f∥∞ ¬ min

{
1,

4

3

√
2

te

}
.(4.5)

(3) Let a ∈ Z+, h = 1{a} ∈ RZ+ , f = h−po(a, t) ∈ RZ+ and gt,{a} be defined as
in (1). Let Z be an arbitrary Z+-valued random variable and c(Z) be defined
as in (3.1). Then

∥gt,{a}∥∞ ¬ 2
1− e−t

t
, E |∆gt,{a}(Z)| ¬ min {1, 2c(Z)} 1− e−t

t
.

Proof. For the proof of the second inequality in (1), see Barbour and Eagle-
son [2, Lemma 4(ii)]. The remaining inequalities in (1) and (2) can be found
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in [5, pp. 7, 14, 15]. The inequalities in (3) follow from [5, Lemma 9.1.5, p. 176].
Here it is used that

∞∑
m=0

|∆gt,{a}(m)| = 2∆gt,{a}(a)(4.6)

(see [2, proof of Lemma 4(ii)] and also Barbour and Jensen [6, p. 79]). ■

The following proposition will be useful in the proofs of Corollary 4.1 and
Theorems 2.2 and 3.2.

PROPOSITION 4.1. Let F,G be two finite sets with cardinality m = |F | =
|G|  2, (pj,r) ∈ [0, 1]F×G, Xj,r be a Be(pj,r)-distributed random variable for
(j, r) ∈ F×G, and ρ be a random variable uniformly distributed overGF

̸=. Assume
that all the random variables ρ, Xj,r (j ∈ F, r ∈ G) are independent. Let

W =
∑
j∈F

Xj,ρ(j), p′j,· = EXj,ρ(j) =
1

m

∑
r∈G

pj,r (j ∈ F ),

µ = EW =
∑
j∈F

p′j,·.

For j, k ∈ F with j ̸= k, letWj =W−Xj,ρ(j) andWj,k =W−Xj,ρ(j)−Xk,ρ(k).
For an arbitrary function h ∈ RZ+ , we have

E(µh(W + 1)−Wh(W )) = D1 +D2,(4.7)

where

D1 =
∑
j∈F

E(p′j,·pj,ρ(j)∆h(Wj + 1)),

D2 =
1

2m

∑
(j,k)∈F 2

̸=

E
(
(pj,ρ(j) − pj,ρ(k))(pk,ρ(j) − pk,ρ(k))∆h(Wj,k + 1)

)
.

Proof. Using Fubini’s theorem, we get, for j ∈ F ,

E(Xj,ρ(j)h(W )) =
∑

ℓ∈GF
̸=

E
(
1{ρ=ℓ}Xj,ℓ(j)h(Wj +Xj,ℓ(j))

)
= E(pj,ρ(j)h(Wj + 1))

and similarly

Eh(W + 1) = E
(
pj,ρ(j)h(Wj + 2) + (1− pj,ρ(j))h(Wj + 1)

)
.
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Hence

E(µh(W + 1)−Wh(W ))

=
∑
j∈F

E(p′j,·h(W + 1)−Xj,ρ(j)h(W ))

=
∑
j∈F

E
(
p′j,·pj,ρ(j)h(Wj + 2) + p′j,·(1− pj,ρ(j))h(Wj + 1)− pj,ρ(j)h(Wj + 1)

)
= D1 +D′2,

where

D′2 =
∑
j∈F

E((p′j,· − pj,ρ(j))h(Wj + 1)).

We have to show that D′2 = D2. Similarly to the above, for (j, k) ∈ F 2
̸= we obtain

E((pj,ρ(k) − pj,ρ(j))h(Wj + 1))

= E
(
(pj,ρ(k) − pj,ρ(j))(pk,ρ(k)h(Wj,k + 2) + (1− pk,ρ(k))h(Wj,k + 1))

)
.

Therefore

D′2 =
∑
j∈F

E((p′j,· − pj,ρ(j))h(Wj + 1))(4.8)

=
1

m

∑
j∈F

∑
k∈F

E((pj,ρ(k) − pj,ρ(j))h(Wj + 1))

=
1

m

∑
(j,k)∈F 2

̸=

E
(
(pj,ρ(k) − pj,ρ(j))

× (pk,ρ(k)h(Wj,k + 2) + (1− pk,ρ(k))h(Wj,k + 1))
)

=
1

m

∑
(j,k)∈F 2

̸=

E
(
(pj,ρ(k) − pj,ρ(j))pk,ρ(k)∆h(Wj,k + 1)

)
.

The latter equality follows from the observation that, for (j, k) ∈ F 2
̸=, we have

E(pj,ρ(k)h(Wj,k + 1)) = E(pj,ρ(j)h(Wj,k + 1)).

In fact, the left-hand side does not change if we replace ρ with the composition
ρ◦τj,k, where τj,k ∈ FF

̸= is the transposition which interchanges j and k. Similarly,

E
(
(pj,ρ(k) − pj,ρ(j))pk,ρ(k)∆h(Wj,k + 1)

)
= E

(
(pj,ρ(j) − pj,ρ(k))pk,ρ(j)∆h(Wj,k + 1)

)
.
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Hence

D′2 = −
1

m

∑
(j,k)∈F 2

̸=

E
(
(pj,ρ(k) − pj,ρ(j))pk,ρ(j)∆h(Wj,k + 1)

)
.(4.9)

By adding the right-hand sides in (4.8) and (4.9) and dividing by 2 we obtain
D′2 = D2. This proves the assertion. ■

REMARK 4.1. The combination of (2.10) and (2.11) in [10] leads to an identity
which is similar but not identical to (4.7). It may be possible to get our results by
using that identity. However, we prefer (4.7), since it does not require additional
notation like that in [10, (2.3)–(2.9)].

COROLLARY 4.1. Let the assumptions of Proposition 4.1 hold. For a Z+-
valued random variable Z, let c(Z) be defined as in (3.1). Set

α =
∑
j∈F

(p′j,·)
2, β =

1

2m2(m− 1)

∑
(j,k)∈F 2

̸=

∑
(r,s)∈G2

̸=

|pj,r − pj,s| |pk,r − pk,s|.

Then, for t ∈ (0,∞),

dTV(P
W ,Po(t)) ¬ |t− µ|min

{
1,

√
2

te

}
+

1− e−t

t
(α+ β),

∥PW − Po(t)∥W ¬ |t− µ|+min

{
1,

4

3

√
2

te

}
(α+ β),

and

(4.10) ∥PW − Po(t)∥loc

¬ 2
1− e−t

t

(
|t− µ|+

(
max
j∈F

c(Wj)
)
α+

(
max

(j,k)∈F 2
̸=

c(Wj,k)
)
β
)
.

Proof. Let t ∈ (0,∞) and Y be a Po(t)-distributed random variable. Let
h ∈ RZ+ be such that h = 1A for A ⊆ Z+ or h ∈ FW or h = 1{a} for a ∈ Z+.
Let f = h − Eh(Y ) and g := gt,f . By using (4.3), Proposition 4.1 and (4.4), we
obtain

|Eh(W )− Eh(Y )| = |E(tg(W + 1)−Wg(W ))|
= |(t− µ) E g(W + 1)|+ |E(µg(W + 1)−Wg(W ))|,
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where

|E(µg(W + 1)−Wg(W ))|
¬

∑
j∈F

E(p′j,·pj,ρ(j)|∆g(Wj + 1)|)

+
1

2m

∑
(j,k)∈F 2

̸=

E |(pj,ρ(j) − pj,ρ(k))(pk,ρ(j) − pk,ρ(k))∆g(Wj,k + 1)|

¬
(
max
j∈F

E |∆g(Wj + 1)|
) 1

m!

∑
j∈F

∑
ℓ∈GF

̸=

p′j,·pj,ℓ(j)

+
(

max
(j,k)∈F 2

̸=

E |∆g(Wj,k+1)|
) 1

2mm!

∑
(j,k)∈F 2

̸=

∑
ℓ∈GF

̸=

|pj,ℓ(j)−pj,ℓ(k)| |pk,ℓ(j)−pk,ℓ(k)|

=
(
max
j∈F

E |∆g(Wj + 1)|
)
α+

(
max

(j,k)∈F 2
̸=

E |∆g(Wj,k + 1)|
)
β.

The proof is easily completed by using Lemma 4.1. ■

LEMMA 4.2. We have

(4.11) γ + γ′ = γ′′, γ′′ + γ′′′ =
1

n

∑
(j,r)∈n2

p2j,r −
∑
j∈n

p2j,· .

Proof. For a, b ∈ R, we have |ab| − ab = 2(a+(−b)+ + (−a)+b+), and there-
fore

γ′′ − γ =
1

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(
(pj,r − pj,s)+(pk,s − pk,r)+

+ (pj,s − pj,r)+(pk,r − pk,s)+
)

=
2

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(pj,r − pj,s)+(pk,s − pk,r)+ = γ′.

Further,

γ′′ + γ′′′ =
1

4n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

((pj,r − pj,s)2 + (pk,r − pk,s)2)

=
1

n

∑
(j,r)∈n2

p2j,r −
∑
j∈n

p2j,· . ■

Proof of Theorem 2.1. Using Corollary 4.1 with F = G = n, m = n, ρ = π,
W = Sn, p′j,· = pj,·, and µ = t = λ, we obtain

dTV(P
Sn ,Po(λ)) ¬ 1− e−λ

λ

( n∑
j=1

p2j,· + γ′′
)
.

The proof is easily completed by using (1.8) and (4.11). ■
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The proof of Theorem 3.1 is analogous and therefore omitted. The following
lemma is needed in the proof of Theorems 2.2 and 3.2.

LEMMA 4.3. Let t ∈ (0,∞), let Y be a Po(t)-distributed random variable and
h ∈ RZ+ such that E |h(Y + 3)| <∞. Set f = h− Eh(Y ) and g = gt,f . Then∫

hd((δ1 − δ0)∗2 ∗ Po(t)) = −2E(∆g(Y + 1))(4.12)

is finite.

Proof. If h0 : Z+ → R is an arbitrary function, then E |Y h0(Y )| < ∞ if and
only if E |h0(Y + 1)| < ∞. In this case, we have E(th0(Y + 1)) = E(Y h0(Y )).
This implies that E |h(Y + j)| <∞ for j ∈ {0, 1, 2, 3}. Since

(δ1 − δ0)∗2 ∗ Po(t) = (δ2 − 2δ1 + δ0) ∗ Po(t) = P Y − 2P Y+1 + P Y+2,

the left-hand side of (4.12) is finite. Using (4.1), we obtain∫
hd((δ1 − δ0)∗2 ∗ Po(t))
= E(h(Y )− 2h(Y + 1) + h(Y + 2))

= E(−2f(Y + 1) + f(Y + 2))

= E(−2(tg(Y + 2)− (Y + 1)g(Y + 1)) + tg(Y + 3)− (Y + 2)g(Y + 2)).

Since E f(Y ) = 0, we deduce from (4.2) that, for j ∈ {0, 1, 2},

E |g(Y + j + 1)| ¬
∞∑

m=0

po(m, t)

tpo(m+ j, t)

∞∑
k=m+j+1

po(k, t)|f(k)|

=
1

(j + 1)
E |f(Y + j + 1)| <∞.

Hence E(tg(Y + j + 1)) = E(Y g(Y + j)) for j ∈ {0, 1, 2}, which implies that∫
hd((δ1 − δ0)∗2 ∗ Po(t))
= E(−2(Y g(Y + 1)− (Y + 1)g(Y + 1)) + Y g(Y + 2)− (Y + 2)g(Y + 2))

= −2E(∆g(Y + 1)). ■

Proof of Theorems 2.2 and 3.2. For ℓ ∈ nn̸= and a real-valued random vari-
able Z, we write Eℓ Z = Eℓ(Z) = E(1{π=ℓ}Z) whenever this exists. Let Y be a
Po(λ)-distributed random variable independent of π andX and let h = 1A ∈ RZ+

for a set A ⊆ Z+ or h ∈ FW. Let f = h− Eh(Y ) and g = gλ,f . Using (4.1) and
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Proposition 4.1 with F = G = n, ρ = π, W = Sn, and µ = λ, we obtain

(4.13) Eh(Sn)− Eh(Y ) = E f(Sn) = E(λg(Sn + 1)− Sng(Sn))

=
n∑

j=1

E(pj,·pj,π(j)∆g(Tj + 1))

+
1

2n

∑
(j,k)∈n2

̸=

E
(
(pj,π(j) − pj,π(k))(pk,π(j) − pk,π(k))∆g(Tj,k + 1)

)
=

n∑
j=1

n∑
r=1

pj,·pj,r
∑

ℓ∈nn
̸=: ℓ(j)=r

Eℓ∆g(Tj + 1)

+
1

2n

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(pj,r − pj,s)(pk,r − pk,s)
∑

ℓ∈nn
̸=

ℓ(j)=r, ℓ(k)=s

Eℓ∆g(Tj,k + 1),

where Tj = Sn − Xj,π(j) and Tj,k = Sn − Xj,π(j) − Xk,π(k) for (j, k) ∈ n2̸=.
Combining (2.10), (1.8), (4.12), (4.13) and (1.9), we obtain

(4.14) Eh(Sn)−
∫
hdQ2

= E f(Sn)−
( n∑
j=1

p2j,· + γ
)
E(∆g(Y + 1)) = D1 +D2,

where

D1 =
n∑

j=1

n∑
r=1

pj,·pj,r
∑

ℓ∈nn
̸=: ℓ(j)=r

Eℓ(∆g(Tj + 1)−∆g(Y + 1))

and

D2 =
1

2n

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(pj,r − pj,s)(pk,r − pk,s)

×
∑

ℓ∈nn
̸=

ℓ(j)=r, ℓ(k)=s

Eℓ(∆g(Tj,k + 1)−∆g(Y + 1)).

We note that, for j, r ∈ n and m ∈ Z+,

(4.15)
∑

ℓ∈nn
̸=: ℓ(j)=r

P (π = ℓ, Tj = m)

=
1

n!

∑
ℓ∈nn

̸=: ℓ(j)=r

P
( ∑
i∈n\{j}

Xi,ℓ(i) = m
)

=
1

n

∑
ℓ∈(n\{r})n\{j}̸=

P (πj,r = ℓ, T ′j,r = m) =
1

n
P (T ′j,r = m),
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where T ′j,r :=
∑

i∈n\{j}Xi,πj,r(i) and the random variable πj,r is independent

of X and has uniform distribution on (n \ {r})n\{j}̸= . Hence

(4.16)
∣∣∣ ∑
ℓ∈nn

̸=
ℓ(j)=r

Eℓ(∆g(Tj + 1)−∆g(Y + 1))
∣∣∣

=
∣∣∣ ∑
m∈Z+

∑
ℓ∈nn

̸=
ℓ(j)=r

(P (π = ℓ, Tj = m)− P (π = ℓ, Y = m))∆g(m+ 1)
∣∣∣

=

∣∣∣∣ 1n ∑
m∈Z+

(P (T ′j,r = m)− P (Y = m))∆g(m+ 1)

∣∣∣∣
¬ 2∥∆g∥∞

n
dTV(P

T ′j,r ,Po(λ)).

We have ET ′j,r = λ′j,r for j, r ∈ n. Using Corollary 4.1 with F = n \ {j},
G = n \ {r}, m = n − 1, ρ = πj,r, W = T ′j,r, p′u,· =

1
n−1

∑
v∈n\{r} pu,v for

u ∈ n \ {j}, µ = λ′j,r and t = λ, we obtain

dTV(P
T ′j,r ,Po(λ))

¬ |λ− λ′j,r|min

{
1,

√
2

λe

}
+

1− e−λ

λ

( ∑
u∈n\{j}

(p′u,·)
2

+
1

2(n− 1)2(n− 2)

∑
(u,u′)∈(n\{j})2̸=

∑
(v,v′)∈(n\{r})2̸=

|pu,v − pu,v′ | |pu′,v − pu′,v′ |
)

¬ |λ− λ′j,r|min

{
1,

√
2

λe

}
+

n2

(n− 1)2
1− e−λ

λ

(∑
u∈n

p2u,· +
n− 1

n− 2
γ′′

)
.

Similarly to (4.15), we infer that, for (j, k), (r, s) ∈ n2̸= and m ∈ Z+,

∑
ℓ∈nn

̸=
ℓ(j)=r, ℓ(k)=s

P (π = ℓ, Tj,k = m) =
1

n(n− 1)
P (T ′′j,k,r,s = m),

where T ′′j,k,r,s :=
∑

i∈n\{j,k}Xi,πj,k,r,s(i) and the random variable πj,k,r,s is in-

dependent of X and has uniform distribution on (n \ {r, s})n\{j,k}̸= . Similarly to
(4.16), we get
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(4.17)
∣∣∣ ∑

ℓ∈nn
̸=

ℓ(j)=r, ℓ(k)=s

Eℓ(∆g(Tj,k + 1)−∆g(Y + 1))
∣∣∣

=
1

n(n− 1)

∣∣∣ ∑
m∈Z+

(P (T ′′j,k,r,s = m)− P (Y = m))∆g(m+ 1)
∣∣∣

¬ 2∥∆g∥∞
n(n− 1)

dTV(P
T ′′j,k,r,s ,Po(λ)).

We note that λ′′j,k,r,s = ET ′′j,k,r,s for (j, k), (r, s) ∈ n2̸=. Using Corollary 4.1 with
F = n \ {j, k}, G = n \ {r, s}, m = n − 2, ρ = πj,k,r,s, W = T ′′j,k,r,s, p′u,· =
1

n−2
∑

v∈n\{r,s} pu,v for u ∈ n \ {j, k}, µ = λ′′j,k,r,s and t = λ, we obtain

dTV(P
T ′′j,k,r,s ,Po(λ))

¬ |λ− λ′′j,k,r,s|min

{
1,

√
2

λe

}
+

1− e−λ

λ

( ∑
u∈n\{j,k}

(p′u,·)
2

+
1

2(n− 2)2(n− 3)

∑
(u,u′)∈(n\{j,k})2̸=

∑
(v,v′)∈(n\{r,s})2̸=

|pu,v − pu,v′ | |pu′,v − pu′,v′ |
)

¬ |λ− λ′′j,k,r,s|min

{
1,

√
2

λe

}
+

n2

(n− 2)2
1− e−λ

λ

(∑
u∈n

p2u,· +
n− 1

n− 3
γ′′

)
.

Combining the inequalities above, we see that

|D1| ¬
2∥∆g∥∞

n

n∑
j=1

n∑
r=1

pj,·pj,rdTV(P
T ′j,r ,Po(λ))

¬ ∥∆g∥∞min

{
1,

√
2

λe

}
ε1

+ 2∥∆g∥∞
n2

(n− 1)2
1− e−λ

λ

n∑
j=1

p2j,·

(∑
u∈n

p2u,· +
n− 1

n− 2
γ′′

)
and

|D2| ¬
∥∆g∥∞
n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

|pj,r − pj,s| |pk,r − pk,s|dTV(P
T ′′j,k,r,s ,Po(λ))

¬ ∥∆g∥∞ε2min

{
1,

√
2

λe

}
+ 2∥∆g∥∞

n2

(n− 2)2
1− e−λ

λ

(∑
u∈n

p2u,· +
n− 1

n− 3
γ′′

)
γ′′.
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Therefore, using (4.14),∣∣∣Eh(Sn)− ∫
hdQ2

∣∣∣ ¬ |D1|+ |D2|

¬ ∥∆g∥∞
(
min

{
1,

√
2

λe

}
(ε1 + ε2) +

1− e−λ

λ
ε3

)
= ∥∆g∥∞ε.

In view of (4.4) and (4.5), we see that (2.11) and (3.4) hold.
We now give a proof of (3.5). Here, we consider the special case that a ∈ Z+,

h = 1{a} ∈ RZ+ , f = h− po(a, λ) and g = gλ,{a}. It follows from (4.6) that, for
an arbitrary Z+-valued random variable Z,∣∣∣ ∞∑
m=0

(P (Z = m)− P (Y = m))∆g(m+ 1)
∣∣∣ ¬ ∥PZ − Po(λ)∥loc

∞∑
m=0

|∆g(m)|

¬ 2∥∆g∥∞∥PZ − Po(λ)∥loc.

Under the present assumptions, this leads to the following improvements of (4.16)
and (4.17) for (j, k), (r, s) ∈ n2̸=:∣∣∣ ∑

ℓ∈nn
̸=: ℓ(j)=r

Eℓ(∆g(Tj + 1)−∆g(Y + 1))
∣∣∣ ¬ 2∥∆g∥∞

n
∥P T ′j,r − Po(λ)∥loc,

and∣∣∣ ∑
ℓ∈nn

̸=:

ℓ(j)=r,ℓ(k)=s

Eℓ(∆g(Tj,k + 1)−∆g(Y + 1))
∣∣∣

¬ 2∥∆g∥∞
n(n− 1)

∥P T ′′j,k,r,s − Po(λ)∥loc.

Further, from (4.10), we get

∥P T ′j,r −Po(λ)∥loc ¬ 2
1− e−λ

λ

(
|λ− λ′j,r|+

κn2

(n− 1)2

(∑
u∈n

p2u,· +
n− 1

n− 2
γ′′

))
,

and

∥P T ′′j,k,r,s − Po(λ)∥loc

¬ 2
1− e−λ

λ

(
|λ− λ′′j,k,r,s| +

κn2

(n− 2)2

(∑
u∈n

p2u,· +
n− 1

n− 3
γ′′

))
.

In view of (4.14), we see that

Eh(Sn)−
∫
hdQ2 = D1 +D2,
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where

|D1| ¬ 2∥∆g∥∞
1− e−λ

λ
ε1

+ 4κ∥∆g∥∞
n2

(n− 1)2
1− e−λ

λ

n∑
j=1

p2j,·

(∑
u∈n

p2u,· +
n− 1

n− 2
γ′′

)
and

|D2| ¬ 2∥∆g∥∞
1− e−λ

λ
ε2

+ 4κ∥∆g∥∞
n2

(n− 2)2
1− e−λ

λ

(∑
u∈n

p2u,· +
n− 1

n− 3
γ′′

)
γ′′.

Therefore∣∣∣Eh(Sn)− ∫
hdQ2

∣∣∣ ¬ |D1|+ |D2| ¬ 2∥∆g∥∞
1− e−λ

λ
(ε1 + ε2 + κε3),

which together with (4.4) implies (3.5). ■

LEMMA 4.4. Let t ∈ (0,∞). Then

∥(δ1 − δ0)∗2 ∗ Po(t)∥TV ¬ min

{
4,

3

te

}
,(4.18) ∣∣∣∣∥(δ1 − δ0)∗2 ∗ Po(t)∥TV −

4

t
√
2πe

∣∣∣∣ ¬ C

t
min

{
1,

1

t

}
,(4.19)

∥(δ1 − δ0)∗2 ∗ Po(t)∥W = ∥(δ1 − δ0) ∗ Po(t)∥TV ¬ min

{
2,

√
2

te

}
,(4.20) ∣∣∣∣∥(δ1 − δ0)∗2 ∗ Po(t)∥W −

√
2

πt

∣∣∣∣ ¬ C√
t
min

{
1,

1√
t

}
,(4.21)

∥(δ1 − δ0)∗2 ∗ Po(t)∥loc ¬ min

{
2,

(
3

2te

)3/2}
,(4.22) ∣∣∣∣∥(δ1 − δ0)∗2 ∗ Po(t)∥loc − 1√

2πt3/2

∣∣∣∣ ¬ C

t3/2
min

{
1,

1

t

}
.(4.23)

The constants 3
e ,

√
2
e and

(
3
2e

)3/2 on the right-hand sides of (4.18), (4.20) and
(4.22) are the best possible.

Proof. For (4.18), (4.22) and the optimality of the constants 3
e and

(
3
2e

)3/2,
see [18, Lemma 3]. Inequality (4.19) was proved in [19, Lemma 5]; the proof of
(4.23) is analogous using [17, (45)]. The equality in (4.20) follows from (1.1); the
inequality and the optimality of the constant

√
2/e are contained in [12, (3.8)].

Inequality (4.21) follows from the more general Proposition 4 in [16]. ■
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REMARK 4.2. We do not know if 1√
t

in the minimum term in (4.21) can be

replaced by 1
t . The norm terms in Lemma 4.4 can be evaluated using the zeros of

some Charlier polynomials. The details are omitted here; more general identities
can be found in [16, Corollaries 1, 2].

Proof of Corollary 2.2. Using (2.10), Theorem 2.2, (4.18) and (4.19), we ob-
tain

dTV(P
Sn ,Po(λ)) =

1

2
∥PSn − Po(λ)∥TV

¬ 1

4
(λ−VarSn)∥(δ1 − δ0)∗2 ∗ Po(λ)∥TV + dTV(P

Sn , Q2)

¬ min

{
1,

3

4λe

}
(λ−VarSn) +

1− e−λ

λ
ε

and∣∣∣∣dTV(P
Sn ,Po(λ))− λ−VarSn√

2πeλ

∣∣∣∣ = ∣∣∣∣12∥PSn − Po(λ)∥TV −
λ−VarSn√

2πeλ

∣∣∣∣
¬ 1

2

∥∥∥∥PSn − Po(λ) +
1

2
(λ−VarSn)(δ1 − δ0)∗2 ∗ Po(λ)

∥∥∥∥
TV

+
1

4
(λ−VarSn)

∣∣∣∣∥(δ1 − δ0)∗2 ∗ Po(λ)∥TV −
4√
2πeλ

∣∣∣∣
¬ 1

4
(λ−VarSn)

∣∣∣∣∥(δ1 − δ0)∗2 ∗ Po(λ)∥TV −
4

λ
√
2πe

∣∣∣∣+ 1

2
∥PSn −Q2∥TV

¬ C

λ
min

{
1,

1

λ

}
(λ−VarSn) +

1− e−λ

λ
ε

¬ Cmin

{
1,

1

λ

}(
λ−VarSn

λ
+ ε

)
. ■

The proof of Corollary 3.1 is analogous and therefore omitted.

5. REMAINING PROOFS

Proof of (1.8). For (j, k) ∈ n2̸=, we have

VarXj,π(j) = pj,·(1− pj,·), E(Xj,π(j)Xk,π(k)) =
1

n(n− 1)

∑
(r,s)∈n2

̸=

pj,rpk,s,

Cov(Xj,π(j), Xk,π(k)) =
1

n− 1

(
pj,·pk,· −

1

n

∑
r∈n

pj,rpk,r

)
.
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Therefore∑
(j,k)∈n2

̸=

Cov(Xj,π(j), Xk,π(k)) =
1

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

pj,r(pk,s − pk,r)

= − 1

2n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

(pj,r − pj,s)(pk,r − pk,s) = −γ.

Hence

VarSn =
n∑

j=1

VarXj,π(j) +
∑

(j,k)∈n2
̸=

Cov(Xj,π(j), Xk,π(k)) = λ−
n∑

j=1

p2j,· − γ. ■

Proof of Lemma 2.2. (1) It is easily shown that for a, b ∈ [0, 1] we have
(a− b)+ ¬ a(1− b), with equality if and only if (a, b) /∈ (0, 1)2. In particular, this
implies (2.6). To prove the second assertion, we note that for a, b, c, d ∈ [0, 1] we
have (a− b)+(c− d)+ ¬ a(1− b)c(1− d), with equality if and only if one of the
following three conditions is true:

• (a, b) /∈ (0, 1)2 and (c, d) /∈ (0, 1)2,

• (a, b) ∈ (0, 1)2 and (c = 0 or d = 1),

• (c, d) ∈ (0, 1)2 and (a = 0 or b = 1).

The proof of the second assertion is now easily completed: Let us first show neces-
sity and suppose that equality holds. For all (j, k), (r, s) ∈ n2̸=, we then have

(pj,r − pj,s)+(pk,s − pk,r)+ = pj,r(1− pj,s)pk,s(1− pk,r),
(pj,s − pj,r)+(pk,r − pk,s)+ = pj,s(1− pj,r)pk,r(1− pk,s).

Now, if j ∈ n and (r, s) ∈ n2̸= are such that (pj,r, pj,s) ∈ (0, 1)2, then (pj,r −
pj,s)+ < pj,r(1− pj,s) and (pj,s − pj,r)+ < pj,s(1− pj,r). This together with the
equalities above implies that for all k ∈ n \ {j} we have pk,s(1 − pk,r) = 0 and
pk,r(1−pk,s) = 0, that is, (pk,r = 1 or pk,s = 0) and (pk,r = 0 or pk,s = 1), which
is equivalent to pk,r = pk,s ∈ {0, 1}. This proves necessity. Sufficiency is shown
similarly.

(2) We have

γ′ ¬ 2

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

pj,rpk,s

=
2

n− 1

(
λ2 −

∑
j∈n

p2j,· −
∑
r∈n

p2·,r +
1

n2
∑

(j,r)∈n2

p2j,r

)
=

2

n
(VarSn − λ+ λ2).
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On the other hand, using (4.11), we get

γ′ = γ′′ − γ ¬ 1

n

∑
(j,r)∈n2

p2j,r −
∑
j∈n

p2j,· − γ =
1

n

∑
(j,r)∈n2

p2j,r +VarSn − λ

= VarSn −
1

n

∑
(j,r)∈n2

pj,r(1− pj,r).

(3) For (pj,r) ∈ {0, 1}n×n, we have

γ′ =
2

n2(n− 1)

∑
(j,k)∈n2

̸=

∑
(r,s)∈n2

̸=

pj,r(1− pj,s)pk,s(1− pk,r)

=
2

n2(n− 1)

∑
(j,k)∈n2

∑
(r,s)∈n2

̸=

pj,r(1− pj,s)pk,s(1− pk,r)

− 2

n2(n− 1)

∑
j∈n

∑
(r,s)∈n2

̸=

pj,r(1− pj,s)pj,s(1− pj,r)

=
2

n2(n− 1)

∑
(r,s)∈n2

̸=

(∑
j∈n

pj,r(1− pj,s)
)(∑

k∈n
pk,s(1− pk,r)

)
=

2

n− 1

∑
(r,s)∈n2

̸=

(
p·,r −

1

n

∑
j∈n

pj,rpj,s

)(
p·,s −

1

n

∑
j∈n

pj,rpj,s

)
. ■

Proof of Lemma 2.1. From Lemma 2.2(2), it follows that

γ′ ¬ 2

n
(VarSn − λ+ λ2).

Therefore A ¬ λ − VarSn + 2
n(VarSn − λ + λ2) = B. From (4.11), we get

γ + γ′ = γ′′  0. Further, the Cauchy–Schwarz inequality implies that λ2 =
(
∑n

j=1 pj,·)
2 ¬ n

∑n
j=1 p

2
j,·. Therefore, using (1.8), we obtain

B =
n− 2

n

(
n∑

j=1

p2j,· + γ

)
+

2λ2

n
¬ n− 2

n

(
n∑

j=1

p2j,· + γ

)
+ 2

n∑
j=1

p2j,·

¬
(
3− 2

n

)
(λ−VarSn) + 2γ′ ¬

(
3− 2

n

)
A. ■
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