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Abstract. We investigate the asymptotic distribution of odd graphs in a de-
formed vacuum state, focusing on the spectral analysis of these graphs. We
explore the adjacency matrices of odd graphs and derive explicit expres-
sions for their mean and variance in the deformed vacuum state. Our main
results provide the probability measures and the corresponding coherent
states for the distribution of these graphs. We calculate the Jacobi coeffi-
cients and Cauchy transforms related to these distributions, which have not
been addressed explicitly in the existing literature. Our findings contribute
to a deeper understanding of the probabilistic and spectral properties of odd
graphs in quantum state frameworks.
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1. INTRODUCTION

Quantum probability theory, first introduced by von Neumann [12], revolutionized
our understanding of quantum statistics by employing self-adjoint operators and
trace functions as analogs for random variables and probability measures, respec-
tively. This foundational work paved the way for subsequent developments in the
field, including the concept of quantum decomposition, which was introduced by
Hashimoto [4] in the context of adjacency matrices of large Cayley graphs. Since
then, quantum decomposition has been applied to a variety of graph structures,
including Hamming graphs [6, 8], Johnson graphs [5, 8, 9], odd graphs [11], and
homogeneous trees [3].

Despite its broad applications, most studies have focused on distributions with
respect to vacuum states and deformed vacuum states, with the notable exception
of odd graphs, which have primarily been studied in the vacuum state context. The
comprehensive summary of these developments can be found in Hora & Obata [10].
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The quantum decomposition method provides a powerful framework for ana-
lyzing the distribution of adjacency matrices through a three-term recurrence re-
lation, establishing a crucial connection with interacting Fock probability spaces.
This approach proves especially effective for asymptotic spectral analysis of grow-
ing graphs.

Consider a growing family of graphs {G(k) = (V (k), E(k))}k­1 and the limit

lim
k→∞

Ak

Zk
,

where Ak is the adjacency matrix of G(k) and Zk a normalizing constant. We define
a stratification V (k) =

⋃∞
n=0 V

(k)
n based on the natural distance function of G(k)

and decompose the adjacency matrix Ak into a sum of quantum components:

Ak = A+
k +A−k .

These operators asymptotically act in the Hilbert space Γ(G(k)) associated with
the stratification of V (k). Consequently, there exists an interacting Fock space
(Γ, {ωn}, B+, B−) where the limit

B̃± = lim
k→∞

A±k
Zk

is described, with B̃± being a linear combination of B± and a function of the
number operator N .

In this paper, we extend the work of Igarashi and Obata [11], who studied odd
graphs and found that the two-sided Rayleigh distribution emerged in the limit of
the vacuum spectral distribution of the adjacency matrix. Our goal is to compute an
explicit probability measure that describes the limit distribution of the normalized
adjacency matrix for the same family of growing odd graphs, but now considering
a deformed vacuum state within the framework of quantum probability theory.

The paper is structured as follows. Section 2 reviews the basics of deformed
vacuum states and the tools needed to prove their positivity. Section 3 elaborates on
quantum decomposition for distance-regular graphs. Section 4 presents the novel
Quantum Central Limit Theorem (QCLT) for odd graphs in the context of de-
formed vacuum states, including its proof. Finally, Section 5 provides an explicit
description of the probability measure obtained in the QCLT of Section 4.

2. DEFORMED VACUUM STATE

In this section, we will define the deformed vacuum state and discuss its properties.
Let G = (V,E) be a graph and A(G) its adjacency algebra. The vacuum state

at a fixed origin o ∈ V is defined by

⟨a⟩o = ⟨δo, aδo⟩, a ∈ A(G).
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It is well known that ⟨Am⟩o represents the number of m-step walks from o ∈ V
back to itself. More generally, we have

(Am)xy = ⟨δx, Amδy⟩,

which corresponds to the number of m-step walks connecting y and x.
We are interested in a particular one-parameter deformation of the vacuum

state. For q ∈ R (though q ∈ C can be considered, our focus is on the range
−1 ¬ q ¬ 1, see [2]), we define a matrix Q = Qq, called the Q-matrix of a graph
G = (V,E), by

Q = Qq = (qδ(x,y))x,y∈V .

For q = 0 we interpret 00 = 1 and Q = 1 (the identity matrix). Thus we have

Qδo =
∑
x∈V

qδ(x,o)δx.

We can define

(2.1) ⟨a⟩q =
∑
x∈V

qδ(x,o)⟨δx, aδo⟩ = ⟨Qδo, aδo⟩, a ∈ A(G).

A normalized linear function defined as above is called a deformed vacuum state
on A(G).

3. QUANTUM DECOMPOSITION FOR DISTANCE-REGULAR GRAPHS

Let G = (V,E) be a graph with a fixed origin o ∈ V . The graph is stratified into a
disjoint union of strata:

V =
∞⋃
n=0

Vn, Vn = {x ∈ V : δ(o, x) = n}.

This partition is known as the stratification (distance partition). For ϵ ∈ {+,−, ◦}
we define Aϵ as follows:

(Aϵ)xy =

{
1 if x ∼ y and δ(o, x)− δ(o, y) = ϵ,

0 otherwise,

where ϵ is assigned the values +1,−1, 0 according as ϵ = +,−, ◦. The adjacency
matrix A is decomposed into three parts:

(3.1) A = A+ +A− +A◦.

We refer to (3.1) as the quantum decomposition of A with Aϵ representing the
quantum components.
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For each n = 0, 1, 2, . . . , we define a unit vector in l2(V ) as

Φn = |Vn|−1/2
∑

x∈Vn

δx,

which is called the nth number vector. In particular, Φ0 = δ0 is known as the
vacuum vector. Let Γ(G) denote the closed subspace spanned by {Φ0,Φ1, . . . }.
Although Γ(G) is not always invariant under the quantum components Aϵ, the
method of quantum decomposition is most effective when either Γ(G) is invariant
or Γ(G) is “asymptotically” invariant under the quantum components.

Let G = (V,E) be a graph. For non-negative integers i, j, k, the graph G =
(V,E) is called distance-regular if, for any choice of x, y ∈ V the number

pkij = |{z ∈ V : δ(x, z) = i, δ(y, z) = j}|,

where δ(x, y) = k, depends only on i, j, k. We consider the deformed vacuum
state defined by

⟨a⟩q = ⟨Qδ0, aδ0⟩ =
∞∑
n=0

qn|Vn|1/2⟨Φn, aΦ0⟩, a ∈ A(G),

where Q = (qδ(x,y)) with q ∈ R. Let G = (V,E) be a distance-regular graph with
intersection numbers {pkij}, and let the degree be given by κ = p011. The mean and
the variance of the adjacency matrix A in the deformed vacuum state are given by
⟨A⟩q = qκ and Σ2

q(A) = ⟨(A− ⟨A⟩q)2⟩q = κ(1− q)(1 + q + qp111), respectively.
Now, consider a growing distance-regular graph G(ν) = (V (ν), E(ν)). Suppose

each G(ν) is endowed with a deformed vacuum state ⟨·⟩q, where q may depend
on ν. The normalized adjacency matrix of interest is given by

Aν − ⟨Aν⟩q
Σq(Aν)

.

Taking the quantum decomposition Aν = A+
ν +A−ν +A◦ν into account, we obtain

Aν − ⟨Aν⟩q
Σq(Aν)

=
A+

ν

Σq(Aν)
+

A−ν
Σq(Aν)

+
A◦ν − qκ(ν)

Σq(Aν)
.

For n = 1, 2, . . . we define

ω̄n(ν, q) =
pn1,n−1(ν)p

n−1
1,n (ν)

Σ2
q(Aν)

and ᾱn(ν, q) =
pn−11,n−1(ν)− qκ(ν)

Σq(Aν)
.
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It is well known that

A+
ν

Σq(Aν)
Φn =

√
ω̄n+1(ν, q)Φn+1, n = 0, 1, 2, . . . ,

A−ν
Σq(Aν)

Φ0 = 0,
A−ν

Σq(Aν)
Φn =

√
ω̄n(ν, q)Φn−1, n = 1, 2, . . . ,

A◦ν − qκ(ν)

Σq(Aν)
Φn = ᾱn+1(ν, q)Φn, n = 0, 1, 2, . . . .

We consider the following limits:

ωn = lim
ν,q

ω̄n(ν, q) = lim
ν,q

pn1,n−1(ν)p
n−1
1,n (ν)

Σ2
q(Aν)

,(3.2)

αn = lim
ν,q

ᾱn(ν, q) = lim
ν,q

pn−11,n−1(ν)− qκ(ν)

Σq(Aν)
,(3.3)

assuming they exist under appropriate scaling balance of ν and q. If the limits
(3.2) and (3.3) exist, we obtain a Jacobi coefficient ({ωn}, {αn}). Let Γ{ωn} =
(Γ, {Ψn}, B+, B−) be an interacting Fock space associated with {ωn} and B◦ be
the diagonal operator defined by {αn}. We set

Ã±ν = A±ν , Ã◦ν = A◦ν − qκ(ν),

and we can now establish the Quantum Central Limit Theorem for a growing dis-
tance-regular graph in the deformed vacuum state. This theorem appears in the
book [10] by Hora and Obata as Theorem 3.29.

THEOREM 3.1. Let G(ν) = (V (ν), E(ν)) be a growing distance-regular graph
with Aν being the adjacency matrix, and each A(G(ν)) be a given a deformed
vacuum state ⟨·⟩q. Assume that the limits in (3.2) and (3.3) exist and they become
a Jacobi coefficient, and that the limit

(3.4) cn = lim
ν,q

qn|V (ν)
n |1/2 = lim

ν,q
qn
√

p0nn(ν)

exists for all n for which {αn} is defined. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be an
interacting Fock space associated with {ωn}, B◦ the diagonal operator defined by
{αn}, and Υ the formal sum of vectors defined by

Υ =
∞∑
n=0

cnΨn.

Then

lim
ν,q

〈
Ãϵm

ν

Σq(Aν)
. . .

Ãϵ1
ν

Σq(Aν)

〉
q

= ⟨Υ,Bϵm · · ·Bϵ1Ψ0⟩

for any ϵ1, . . . , ϵm ∈ {+,−, ◦} and m = 1, 2, . . . .
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4. QCLT FOR ODD GRAPHS IN A DEFORMED VACUUM STATE

In this section, we delve into the Quantum Central Limit Theorem (QCLT) for
odd graphs in the context of a deformed vacuum state. Odd graphs, characterized
by their unique regularity and distance-transitivity properties, present a fascinating
case study for spectral analysis. Building on foundational results by Igarashi and
Obata, this work investigates the asymptotic behavior of the adjacency matrix for
odd graphs as the graph size grows.

Let k ­ 2 be an integer and set S = {1, . . . , 2k − 1}. The pair

V = {x ⊂ S : |x| = k − 1}, E = {(x, y) : x, y ∈ V, x ∩ y = ∅}

is called the odd graph and is denoted by Ok. Obviously, Ok is a regular graph of
degree k.

Igarashi and Obata [11] proved that the distance between two vertices of an odd
graph is characterized by the cardinality of their intersection. Set

In =

{
k − 1− n/2 if n is even,
(n− 1)/2 if n is odd,

where n = 0, 1, . . . , k − 1. Then, for a pair of vertices x, y of the odd graph Ok,
we have

|x ∩ y| = In ⇐⇒ δ(x, y) = n.

As a direct consequence of this fact, odd graphs are distance-transitive, therefore
distance-regular. In order to apply quantum probabilistic techniques to obtain the
asymptotic spectral distribution of the adjacency matrix Ak as k →∞, in [11] the
intersection numbers of Ok was computed.

PROPOSITION 4.1. Let {phij} be the intersection numbers of the odd graph Ok,
k ­ 2. For 1 ¬ n ¬ k − 1,

pn1,n−1 =

{
n/2 if n is even,
(n+ 1)/2 if n is odd.

For 0 ¬ n ¬ k − 2,

pn1,n+1 =

{
k − n/2 if n is even,
k − (n+ 1)/2 if n is odd.

For 0 ¬ n ¬ k − 1,

pn1,n =


0 if 1 ¬ n ¬ k − 2,

(k + 1)/2 if n = k − 1 and k is odd,
k/2 if n = k − 1 and k is even.
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From the last proposition the following central limit theorem for odd graphs
(with respect to the vacuum state) was deduced.

THEOREM 4.2 (Igarashi & Obata [11]). For the adjacency matrix Ak of the
odd graph Ok we have

lim
k→∞

〈(
Ak√
k

)m〉
o

=
∞∫
−∞

xm|x| exp(−x2) dx, m = 1, 2, . . . .

In this paper, we focus on the asymptotic properties of the adjacency matrix Ak

of odd graphs within a deformed vacuum state framework. The mean and the vari-
ance of Ak in this state are given by

⟨Ok⟩q = qk, Σ2
q(Ok) = k(1− q2),

respectively. This leads to the normalized adjacency matrix

Ok − ⟨Ok⟩q
Σq(Ok)

=
Ok − qk√
k(1− q2)

.

To explore the asymptotic distribution in the deformed vacuum state, we analyze
the sequences {ωn}, {αn}, {cn} defined in (3.2)–(3.4). This enables us to derive
new results about the spectral behavior of Ak.

To determine ωn, consider the following cases:

• For even n,

ωn = lim
k,q

n
2

(
k − n

2

)
k(1− q2)

.

• For odd n,

ωn = lim
k,q

n+1
2

(
k − n−1

2

)
k(1− q2)

.

Next, for αn we have

αn = lim
k,q

pn−11,n−1(k)− qk

Σq(Ok)
= lim

k,q

−qk√
k(1− q2)

= lim
k,q

−q
√
k√

1− q2
.

Note that q may depend on k, so we need to balance q and k. An appropriate
scenario is

(4.1) lim
k→∞

q = 0, lim
k→∞

q
√
k = γ,

where γ ∈ R can be arbitrarily chosen. Under these conditions we get

{ωn}n­1 = {1, 1, 2, 2, 3, 3, 4, . . . }, {αn}n­1 = {−γ,−γ,−γ, . . . }.
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To compute cn, we evaluate p0nn(k). For n even, we have

p0nn =

(
k − 1

k − 1− n/2

)(
k

n/2

)
=

(
k − 1
n/2

)(
k

n/2

)
,

thus

cn = lim
k,q

qn

√(
k − 1
n/2

)(
k

n/2

)

= lim
k,q

qn

(n/2)!

√(
1− 1

k

)
· · ·

(
1− n/2

k

)(
1− n/2 + 1

k

)
kn/2+n/2

=
γn

(n/2)!
.

For odd n, we have

p0nn(k) =

(
k − 1

(n− 1)/2

)(
k

k − 1− (n− 1)/2

)
=

(
k − 1

k − 1− (n− 1)/2

)(
k

k − 1− (n− 1)/2

)
,

thus

cn = lim
k,q

qn

√(
k − 1

k − 1− (n− 1)/2

)(
k

k − 1− (n− 1)/2

)

= lim
k,q

qn

√(
1− 1

k

)
· · ·

(
1− n/2

k

)(
1− n/2+1

k

)
k(n−1)/2+(n−1)/2+1(

n−1
2 +1

)(
n−1
2

)
!
(
n−1
2

)
!

=
γn√

n−1
2 + 1

(
n−1
2

)
!
.

The formal sum of vectors is given by

Ωγ =
∞∑
n=0

cnΨn, where cn =


γn

(n/2)!
if n is even,

γn√
n−1
2 + 1

(
n−1
2

)
!

if n is odd.

This corresponds to the coherent state of the Fock space Γ{ωn}. We are now pre-
pared to describe the asymptotic distribution of odd graphs in the deformed vacuum
state.
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THEOREM 4.3. Let Ak be the adjacency matrix of the odd graph Ok, k ­ 2.
Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interacting Fock space associated with
{ωn} = {1, 1, 2, 2, 3, 3, 4, . . . }. Then taking the limits as in (4.1) we have

lim
k,q

A±k
Σq(Ak)

= B±, lim
k,q

A◦k − ⟨Ak⟩q
Σq(Ak)

= −γ,

in the sense of stochastic convergence, where the left-hand sides are in the de-
formed vacuum state ⟨·⟩q and the right-hand sides in the coherent state ⟨·⟩Ωγ . In
particular, for m = 1, 2, . . . ,

(4.2) lim
k,q

〈(
Ak − ⟨Ak⟩q
Σq(Ak)

)m〉
q

= ⟨(B+ +B− − γ)m⟩Ωγ .

5. CALCULATING THE LIMIT MEASURE

In this section our objective is to determine a probability measure µ such that

⟨(B+ +B− − γ)m⟩Ωγ =
∞∫
−∞

tm µ(dt), m = 1, 2, . . . .

Throughout the remainder of this section, let Γ{ωn} = (Γ, {Ψn}, B+, B−) repre-
sent the interacting Fock space associated with {ωn} = {1, 1, 2, 2, 3, 3, 4, . . . }. It
is worth noting that no existing literature provides an explicit calculation of this
distribution.

We recall that Ωγ is a coherent state with parameter γ ∈ R. Therefore by
combining [10, Proposition 4.17] with (4.2) we obtain

⟨Ωγ , (B
+ +B− − γ)mΨ0⟩ = ⟨Ψ0, (B

+ +B− − γB+B−)mΨ0⟩.

Next, we need to find the measure µ such that

(5.1) ⟨Ψ0, (B
+ +B− − γB+B−)mΨ0⟩ =

∞∫
−∞

tm µ(dt), m = 1, 2, . . . .

As−γB+B− is a diagonal operator defined by the sequence {0,−γ,−γ,−γ, . . . },
the Jacobi coefficient of µ in (5.1) is ({ωn}, {0,−γ,−γ,−γ, . . . }). The Cauchy
transform of µ is given by

Gµ(z) =
∞∫
−∞

µ(dt)

z − t
=

1

z − 1

z + γ − 1

z + γ − 2

z + γ − · · ·

,

where Im z ̸= 0.
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Let ν be a measure such that ν(dt) = |t|e−t2dt, which has the Jacobi coefficient
({ωn}, {αn ≡ 0}). Then we have

Gµ(z − γ) =
1

z − γ − 1

z − 1

z − 2

z − · · ·

=
1

z − γ −Kν(z)
,

where Kν(z) = z − 1/Gν(z). We shall apply Stieltjes’ inversion formula to the
right-hand side of the last equation, i.e. we need to compute

− 1

π
lim

y→+0
Im Gµ(x+ iy − γ) = − 1

π
lim

y→+0

Im Gν(x+ iy)

∥−γGν(x+ iy) + 1∥2
(5.2)

=
fν(x)

∥−γ limy→+0Gν(x+ iy) + 1∥2
,

where fν = dν/dx. Since ν is symmetric, we have Gν(z) = zGρ(z
2) (see [1]),

where ρ(dx) = e−xdx. Thus,

(5.3) lim
y→+0

Gν(z) = lim
y→+0

zGρ(z
2)

= lim
y→+0

Re zGρ(z
2) + i lim

y→+0
Im zGρ(z

2)

= πxHfρ(x
2) + iπ|x|fρ(x2),

where Hfρ(x) = e−x Ei(x) is the Hilbert transform (see [7, Chapter 3]) of fρ(x)
= e−x and Ei(x) is the special function on the complex plane called the exponential
integral, defined by

Ei(x) = −
∞∫
−x

e−t

t
dt.

Combining (5.2) and (5.3) we obtain

− 1

π
lim

y→+0
Im Gµ(x+ iy − γ) =

|x|e−x2

(−γπxe−x2 Ei(x2) + 1)2 + (γπ|x|e−x2)2
.

Therefore the explicit form for µ is a translation of the above expression. Then we
may restate Theorem 4.3.

THEOREM 5.1. For the adjacency matrix Ak of the odd graph Ok we have

lim
k,q

〈(
Ak − ⟨Ak⟩q
Σq(Ak)

)m〉
q

=
∞∫
−∞

xm µ(dx), m = 1, 2, . . . ,
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Figure 1. µ(dx) with γ = 0, 1/3, 1/6, 1 (Theorem 5.1)

where the explicit form of µ is

µ(dx) =
|x− γ|e−(x−γ)2

(−γπ(x− γ)e−(x−γ)2Ei((x− γ)2) + 1)2 + (γπ|x− γ|e−(x−γ)2)2
dx.

(See Fig. 1.)

REMARK 5.2. The case γ = 0 in Theorem 5.1 is [11, Theorem 6.1].
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