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Abstract. We provide sufficient conditions for the existence of classical so-
lutions of fractional semilinear elliptic PDEs of index α ∈ (1, 2) with poly-
nomial gradient nonlinearities on d-dimensional balls, d ⩾ 2. Our approach
uses a tree-based probabilistic representation of solutions and their partial
derivatives using α-stable branching processes, and allows us to take into ac-
count gradient nonlinearities not covered by deterministic finite difference
methods so far. In comparison with the existing literature on the regularity
of solutions, no polynomial order condition is imposed on gradient nonlin-
earities. Numerical illustrations demonstrate the accuracy of the method in
dimension d = 10, solving a challenge encountered with the use of deter-
ministic finite difference methods in high-dimensional settings.

2020 Mathematics Subject Classification: Primary 35J15; Secondary
35J25, 35J60, 35J61, 35R11, 35B65, 60J85, 60G51, 60G52, 65C05, 33C05.

Key words and phrases: elliptic PDEs, semilinear PDEs, fractional Lapla-
cian, gradient nonlinearities, stable processes, branching processes, Monte-
Carlo method.

1. INTRODUCTION

The study of solutions of nonlocal and fractional elliptic partial differential equa-
tions (PDEs) is an active research topic which has attracted significant attention
over the past decades. In the case of the classical (local) Laplacian, viscosity solu-
tions of fully nonlinear second-order elliptic PDEs have been constructed in [19]
by the Perron method.

On the other hand, nonlocal elliptic PDEs can be solved using weak solutions
(see [28, Definition 2.1]) or viscosity solutions (see [31] and [28, Remark 2.11]).
Weak solutions can be obtained from the Riesz representation or Lax–Milgram
theorems as in [13, 27]. See also [3] for the use of the Perron method, and [11] for
semigroup methods applied to second-order elliptic integro-differential PDEs.
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Given d ⩾ 1, let

∆αu = −(−∆)α/2u =
4α/2Γ(d/2 + α/2)

πd/2|Γ(−α/2)|
lim
r→0+

∫
Rd\B(x,r)

u( ·+ z)− u(z)
|z|d+α

dz

denote the fractional Laplacian on Rd with parameter α ∈ (0, 2) (see, e.g., [21]),
where Γ(p) :=

∫∞
0
e−λxλp−1 dλ is the gamma function and |z| is the Euclidean

norm of z ∈ Rd.
For problems of the form

∆αu(x) + f(x) = 0

with u = ϕ on Rd \ D, where D is an open bounded domain in Rd, the Hölder
regularity of viscosity solutions has been proved in [20] when D is a ball and f, ϕ
are bounded functions. Existence of viscosity solutions has been derived in [31]
under smoothness assumptions on f, ϕ, and the existence of classical Hölder reg-
ular solutions has been proved in [29] when ϕ is bounded continuous and f is
Hölder continuous. See also [13], resp. [23], for the existence of weak solutions,
resp. viscosity solutions, with nonlocal operators. Regarding problems of the form

∆αu(x) + f(x, u(x)) = 0,

existence of nontrivial solutions with u = 0 outside an open bounded domain
D with Lipschitz boundary in Rd has been considered in [30] using the mountain
pass theorem when f is a Carathéodory function onD×Rd satisfying a polynomial
growth condition of order m ∈ (1, (d+ α)/(d− α)).

The regularity of viscosity solutions of semilinear elliptic PDEs of the form

(1.1) ∆αu(x)− b(x)∥∇u(x)∥κ+τ
Rd − ∥∇u(x)∥rRd = 0, x ∈ D,

where D is an open domain in Rd and b is in the space Cτ (Rd) of τ -Hölder con-
tinuous functions on Rd for some τ ∈ (0, 1), has been considered in [4, §4.3].
Namely, from Theorem 3.1 therein, if b is in Cτ (Rd) and κ, r ∈ (0, 2), then any
bounded viscosity solution u of (1.1) is β-Hölder continuous for small enough β;
see also [5, §4.1.2] for Lipschitz regularity in the case of mixed local and fractional
Laplacians.

More recently, the Lipschitz regularity of viscosity solutions of

∆αu(x) + f(x,∇u(x)) = 0

on D = B(0, R), the open ball of radius R > 0 in Rd, has been obtained in
[7, Theorem 2.1], provided that f ∈ C(Rd × Rd) satisfies a power-type growth
condition of order m ∈ (0, α + 1) in ∇u(x), while this bound can be lifted under
an extra coercivity condition on H .
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In this paper, we consider the class of semilinear elliptic problems on B(0, R)
of the form

(1.2)

{
∆αu(x) + f(x, u(x),∇u(x)) = 0, x ∈ B(0, R),

u(x) = ϕ(x), x ∈ Rd \B(0, R),

where

• f(x, y, z) is a polynomial nonlinearity on Rd × R× Rd, of the form

(1.3) f(x, y, z) =
∑

l=(l0,...,lm)∈Lm
cl(x)y

l0
m∏
i=1

(bi(x) · z)li ,

where Lm is a finite subset of Nm+1 for somem ⩾ 0, and (cl(x))l=(l0,...,lm)∈Lm ,
(bi(x))i=1,...,m are bounded continuous functions of x ∈ Rd, with x·z := x1z1+
· · ·+ xdzd,

• ϕ : Rd → R is a bounded Lipschitz function on Rd \B(0, R).

Using a probabilistic approach, we prove the existence of regular viscosity solu-
tions to (1.2) under the following conditions. We note that, in comparison to the
literature quoted above on the regularity of solutions, no coercivity or maximum
growth order condition in z is imposed on f(x, y, z).

ASSUMPTION (A)

(1) The boundary condition ϕ belongs to the fractional Sobolev space

Hα(Rd) :=

{
u ∈ L2(Rd) :

|u(x)− u(y)|
|x− y|d/2+α/2

∈ L2(Rd × Rd)

}
and is bounded on Rd \B(0, R).

(2) The coefficients cl(x), l ∈ Lm, are uniformly bounded functions, i.e.,

∥cl∥∞ := sup
x∈B(0,R)

|cl(x)| <∞, l = (l0, . . . , lm) ∈ Lm.

(3) The coefficients bi(x), i = 0, . . . ,m, are such that

sup
x∈B(0,R)

|bi(x)|
R− |x|

<∞, i = 1, . . . ,m.

Theorem 1.1 is the main result of this paper. It is implied by Theorem 4.1, in
which we prove the existence of a classical solution for fractional elliptic problems
of the form (1.2).
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THEOREM 1.1. Let α ∈ (1, 2) and d ⩾ 2. Under Assumption (A), the semilin-
ear elliptic PDE (1.2) admits a classical solution inCα+ϵ(B(0, R))∩C0(B(0, R))
for some ϵ > 0, provided that R and maxl∈Lm ∥cl∥∞ are sufficiently small.

Our method of proof relies on the probabilistic representation of PDE solutions
using stochastic branching processes, as introduced in [32, 18]. Probabilistic repre-
sentations have been applied to the blow-up and existence of solutions for parabolic
PDEs in [24, 22]. They have also been recently extended in [1] to treat polynomial
nonlinearities in gradient terms in elliptic PDEs with (local) diffusion generators,
following the approach of [15] in the parabolic case. In this construction, gradi-
ent terms are associated to tree branches to which a Malliavin integration by parts
is applied. In [25], this approach has been extended to the treatment of nonlo-
cal pseudo-differential operators of the form −η(−∆/2) using random branching
trees constructed from a Lévy subordinator, with application to parabolic PDEs
with fractional Laplacians.

The existence of viscosity solutions in Theorem 1.1 is obtained through a prob-
abilistic representation of the form

(1.4) u(x) := E[Hϕ(Tx,0)], x ∈ B(0, R),

where Hϕ(Tx,0) (see (4.2)) is a functional of a random branching tree Tx,0 started
at x ∈ Rd, and constructed in Section 3. The proof of Theorem 1.1 also makes use
of existence results for nonlinear elliptic PDEs with fractional Laplacians derived
in [26, Theorem 1.2, Proposition 3.5].

To prove Theorem 1.1, in Proposition 4.1 we construct for each i = 0, . . . ,m
a sufficiently integrable functional Hϕ(Tx,i) of a random tree Tx,i such that the
probabilistic representation

u(x) = E[Hϕ(Tx,0)], x ∈ Rd,

yields a viscosity solution of (1.2) in C1(B(0, R)) ∩ C0(B(0, R)), where the gra-
dients bi(x) · ∇u(x), x ∈ B(0, R), i = 0, . . . ,m, can be represented as

u(x) = E[Hϕ(Tx,0)], bi(x) · ∇u(x) = E[Hϕ(Tx,i)], x ∈ Rd,

under integrability assumptions on (Hϕ(Tx,i))x∈B(0,R).
Then, in Proposition 4.2 we show that for any d ⩾ 2 and p ⩾ 1, the collection

(Hϕ(Tx,i))x∈B(0,R) is bounded in Lp(Ω) uniformly in x ∈ B(0, R), and there-
fore uniformly integrable, i = 0, . . . ,m. We conclude the proof of Theorem 1.1
by showing, using results of [20, 29], that the C1 viscosity solution of (1.2) is in
Cα+ϵ(B(0, R)) ∩ C0(B(0, R)) for some ϵ > 0.

For this, we extend the arguments of [1] from the standard Laplacian ∆ and
Brownian motion to the fractional Laplacian ∆α := −(−∆)α/2 and its associated
stable process. There are, however, significant differences from the Brownian case.
In particular, in the stable setting we rely on sharp gradient estimates for fractional
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Green and Poisson kernel proved in [10], and on integrability results for stable
process hitting times (see [9]). The behavior of the negative moments of stable
processes (see (2.5)) requires a more involved treatment of integrability in small
time when showing the boundedness of (Hϕ(Tx,i))x∈B(0,R) in Lp(Ω), for p ⩾ 1.

In addition, we present a Monte Carlo numerical implementation of the prob-
abilistic representation (1.4) on specific examples. In comparison with determin-
istic finite difference methods (see e.g. [16, §6.3] for the one-dimensional Dirich-
let problem), our approach allows us to take into account gradient nonlinearities.
We also note that our tree-based Monte Carlo implementation applies to high-
dimensional problems (see Figures 4 and 6 in dimension d = 10), whereas the
application of deterministic finite difference methods to the fractional Laplacian in
higher dimensions is challenging (see e.g. [16, p. 3082]).

This paper is organized as follows. Section 3 presents the description of the
branching mechanism, following the preliminaries on stable processes and kernel
introduced in Section 2. In Section 4 we state and prove our main existence result,
Theorem 4.1, for the probabilistic representation of the solution of (1.2). Section 5
presents a Monte Carlo numerical implementation of our method on specific ex-
amples.

2. PRELIMINARIES AND NOTATION

Before proceeding further, we recall some preliminary results on fractional Lapla-
cians on the ball B(0, R) in Rd.

2.1. Poisson and Green kernels. Given an Rd-valued α-stable process (Xt)t⩾0,
α ∈ (0, 2), we consider the process

Xt,x := x+Xt, t ∈ R+,

started at x ∈ Rd (see e.g. [2, §1.3.1]), and the first hitting time

τR(x) := inf {t ⩾ 0 : Xt,x ̸∈ B(0, R)}

of Rd \B(0, R) by (Xt,x)t⩾0. Note that by the bound [9, (1.4)] we have E[τR(x)]
< ∞, and therefore τR(x) is almost surely finite for all x ∈ B(0, R). The Green
kernel GR(x, y) satisfies

(2.1) E
[τR(x)∫

0

f(Xt,x) dt
]
=

∫
B(0,R)

GR(x, y)f(y) dy, x ∈ B(0, R),

for f a nonnegative measurable function on Rd. If α ∈ (0, 2) \ {d}, we also have

GR(x, y) =
κdα

|x− y|d−α
r0(x,y)∫

0

tα/2−1

(1 + t)d/2
dt, x, y ∈ B(0, R),
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(see [12, Theorem 3.1]), where

r0(x, y) :=
(R2 − |x|2)(R2 − |y|2)

R2|x− y|2
and κdα :=

2−αΓ(d/2)

πd/2(Γ(α/2))2
.

The Poisson kernel PR(x, y) of the harmonic measure Px(XτR(x),x ∈ dy) satisfies

(2.2) E[f(Xx
τR(x))] =

∫
Rd\B(0,R)

PR(x, y)f(y) dy, x ∈ B(0, R),

for f a nonnegative measurable function on Rd, and is given by

PR(x, y) = A(d,−α)
∫

B(0,R)

GR(x, z)

|y − z|d+α
dz,

where

A(d,−α) := 2αΓ((d+ α)/2)

πd/2|Γ(−α/2)|
.

In particular, when |x| < R and |y| > R we have

PR(x, y) =
C(α, d)
|x− y|d

(
R2 − |x|2

|y|2 −R2

)α/2

,

with C(α, d) := Γ(d/2)π−d/2−1 sin(πα/2). In addition, we have the bounds

(2.3) |∇xPR(x, y)| ⩽ (d+ α)
PR(x, y)

R− |x|
, x ∈ B(0, R), y ∈ Rd \B(0, R),

where B(0, R) denotes the closed ball of radius R > 0 in Rd (see [10, Lem-
ma 3.1]), and

(2.4) |∇xGR(x, y)| ⩽ d
GR(x, y)

min(|x− y|, R− |x|)
, x, y ∈ B(0, R), x ̸= y,

(see [10, Corollary 3.3]).

2.2. Moments of stable processes. We will need to estimate the negative moments
E[|Xt|−p] of an α-stable process (Xt)t⩾0 represented as the subordinated Brown-
ian motion (Xt)t⩾0 = (BSt)t⩾0, where the subordinator (St)t⩾0 is an α/2-stable
process with Laplace exponent η(λ) = (2λ)α/2, i.e.

E[e−λSt ] = e−t(2λ)
α/2
, λ, t ⩾ 0,

(see, e.g., [2, Theorem 1.3.23 and pp. 55–56]). Using the fact thatBSt/
√
St follows
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the normal distribution N (0, 1) given St, for d ⩾ 1 and p ∈ (0, d) we have

E[|Xt|−p] = E[|BSt |−p] = E
[
S
−p/2
t E

[
S
p/2
t

|BSt |p

∣∣∣∣ St]](2.5)

= E
[
S
−p/2
t

∫
Sd−1

µd(dσ)
∞∫
0

rd−1−p
e−r

2/2

(2π)d/2
dr

]
= 2

2(d−p−2)/2

2d/2Γ(d/2)
Γ((d− p)/2)E[S−p/2t ]

=
Cα,d,p

tp/α
, t > 0, α ∈ (1, 2),

where µd denotes the surface measure on the d-dimensional sphere Sd−1,

Cα,d,p := 21−p
Γ(p/α)Γ((d− p)/2)
αΓ(p/2)Γ(d/2)

,

and we have used the relation E[S−pt ] = α−121−pt−2p/αΓ(2p/α)/Γ(p), p, t > 0
(see, e.g., [25, (1.10)]).

2.3. Integration by parts. The stochastic representation of the gradient∇u(x) will
rely on an integration by parts argument. For this, we will use the weight functions
WB(0,R)(x, y) andW∂B(0,R)(x, y) defined as

(2.6) WB(0,R)(x, y) :=
∇xGR(x, y)

GR(x, y)
and W∂B(0,R)(x, y) :=

∇xPR(x, y)

PR(x, y)
,

for x, y ∈ B(0, R).

LEMMA 2.1. Let α ∈ (1, 2) and d ⩾ 2.

(a) Given a bounded measurable function ϕ on Rd \B(0, R), the function

(2.7) χϕ
1 (x) := E[ϕ(XτR(x),x)] =

∫
Rd\B(0,R)

PR(x, y)ϕ(y) dy, x ∈ B(0, R),

belongs to C1(B(0, R)) ∩ C0(B(0, R)), with

∇χϕ
1 (x) = E[W∂B(0,R)(x,XτR(x),x)ϕ(XτR(x),x)], x ∈ B(0, R).

(b) Given a bounded continuous function h on B(0, R), the function

χh
2(x) := E

[τR(x)∫
0

h(Xt,x) dt
]
=

∫
B(0,R)

GR(x, y)h(y) dy, x ∈ B(0, R),

belongs to C1(B(0, R)) ∩ C0(B(0, R)), with

∇χh
2(x) = E

[τR(x)∫
0

WB(0,R)(x,Xt,x)h(Xt,x) dt
]
, x ∈ B(0, R).
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Proof. (a) Using (2.2) and the boundedness of ϕ on Rd \B(0, R), we differen-
tiate (2.7) under the integral sign to find that χϕ

1 is in C1(B(0, R)) ∩ C0(B(0, R))
with

∇χϕ
1 (x) =

∫
Rd\B(0,R)

∇xPR(x, y)ϕ(y)dy = E
[∇xPR(x,XτR(x),x)

PR(x,XτR(x),x)
ϕ(XτR(x),x)

]
for x ∈ B(0, R).

(b) Using (2.1), the condition d ⩾ 2 and the relation

χh
2(x) =

∫
B(0,R)

GR(x, y)h(y) dy

=
∫

B(x,R)

κdα
|z|d−α

r0(x,z−x)∫
0

tα/2−1

(1 + t)d/2
dt h(z − x) dz, x ∈ B(0, R),

we differentiate (2.7) under the integral sign and integrate by parts to obtain

∇χh
2(x) =

∫
B(0,R)

∇xGR(x, y)h(y) dy = E
[τR(x)∫

0

∇xGR(x,Xt,x)

GR(x,Xt,x)
h(Xt,x) dt

]
,

first for h a C1 function with compact support inB(0, R), then by uniform approxi-
mation for h continuous with compact support inB(0, R), and finally by pointwise
approximation for h bounded continuous on B(0, R), using the bound (2.4). ■

3. MARKED BRANCHING PROCESS

Let (ql0,...,lm)(l0,...,lm)∈Lm be a strictly positive probability mass function on Lm,
and let ρ : R+ → (0,∞) be a probability density function on R+. We consider

• an i.i.d. family (τ i,j)i,j⩾1 of random variables with distribution ρ(t)dt on R+

and tail distribution function F (t) =
∫∞
t
ρ(ds) ds, t ⩾ 0,

• an i.i.d. family (Ii,j)i,j⩾1 of discrete random variables with distribution

P(Ii,j = (l0, . . . , lm)) = ql0,...,lm > 0, (l0, . . . , lm) ∈ Lm,

• an independent family (X(i,j))i,j⩾1 of symmetric α-stable processes.

In addition, the families of random variables (τ i,j)i,j⩾1, (Ii,j)i,j⩾1 and
(X(i,j))i,j⩾1 are assumed to be mutually independent.

The probabilistic representation for the solution of (1.2) uses a branching pro-
cess started from a particle x ∈ B(0, R) with label 1̄ = (1) and mark i ∈
{0, . . . ,m}, which evolves according to the processX 1̄

s,x = x+X
(1,1)
s , s ∈ [0, T1̄],
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with T1̄ = τ1,1 ∧ τR(x) = min(τ1,1, τR(x)), where in the notation

τR(x) := inf {t ⩾ 0 : x+X
(1,1)
t ̸∈ B(0, R)},

we omit the reference to the label (1, 1).
If τ1,1 < τR(x), then the process branches at time τ1,1 into new independent

copies of (Xt)t⩾0, each of them started at X 1̄
τ1,1,x, and determined by a random

sample (l0, . . . , lm) ∈ Lm of I1,1. Namely, |l| := l0 + · · · + lm new branches
carrying respectively the marks i = 0, . . . ,m are created with probability ql0,...,lm ,
where

(1) the first l0 branches carry the mark 0 and are indexed by (1, 1), (1, 2), . . . ,
(1, l0),

(2) for i = 1, . . . ,m, the next li branches carry the mark i and are indexed by
(1, l0 + · · ·+ li−1 + 1), . . . , (1, l0 + · · ·+ li).

Each new particle then follows independently the above mechanism in such a
way that particles at generation n ⩾ 1 are assigned a label of the form k̄ =
(1, k2, . . . , kn) ∈ Nn, and every branch stops when it leaves the domain B(0, R).

More precisely, the particle with label k̄ = (1, k2, . . . , kn) ∈ Nn is born at
time Tk̄−, where k̄− := (1, k2, . . . , kn−1) represents the label of its parent, and
its lifetime τn,πn(k̄) is the element of index πn(k̄) in the i.i.d. sequence (τn,j)j⩾1,
which defines an injection

πn : Nn → N, n ⩾ 1.

The random evolution of the particle of label k̄ is given by

X k̄
t,x := X k̄−

Tk̄−,x
+X

n,πn(k̄)
t−Tk̄−

, t ∈ [Tk̄−, Tk̄],

where Tk̄ := Tk̄− + τn,πn(k̄) ∧ τR(X k̄−
Tk̄−,x

) and

τR(X
k̄−
Tk̄−,x

) := inf {t ⩾ 0 : X k̄−
Tk̄−,x

+X
n,πn(k̄)
t ̸∈ B(0, R)}.

If τn,πn(k̄) < τR(X
k̄−
Tk̄−,x

), we draw a random sample (l0, . . . , lm) of Ik̄ := In,πn(k̄)

with probability ql0,...,lm , and the particle k̄ branches into |In,πn(k̄)| = l0+ · · ·+ lm
offsprings, indexed by (1, . . . , kn, j), j = 1, . . . , |In,πn(k̄)|, and respectively car-
rying the marks i = 0, . . . ,m, as in point (b) above. Namely, the particles whose
index ends with an integer between 1 and l0 will carry the mark 0, and those with
index ending with an integer between l0 + · · · + li−1 + 1 and l0 + · · · + li will
carry a mark i ∈ {1, . . . ,m}. Finally, the mark of the particle k̄ will be denoted by
θk̄ ∈ {0, . . . ,m}.
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The set of particles dying inside the ball B(0, R) is denoted by K◦, whereas
those dying outside of B(0, R) form a set denoted by K∂ . For n ⩾ 1, the set
of nth generation particles that die inside B(0, R) is denoted by K◦n, the set of
nth generation particles which die outside B(0, R) is denoted by K∂

n, and we let
Kn = K◦n ∪ K∂

n.

DEFINITION 3.1. We denote by Tx,i the marked branching process, or random
marked tree constructed above after starting from position x ∈ Rd and mark i ∈
{0, . . . ,m} on its first branch.

The tree Tx,0 will be used for the stochastic representation of the solution u(x)
of the PDE (1.2), while the trees Tx,i will be used for the stochastic representation
of bi(x) ·∇u(x), i = 1, . . . ,m. Table 1 summarizes the notation introduced so far.

Table 1

Object Notation

Initial position x
Tree rooted at x with initial mark θ1̄ = i Tx,i
Particle (or label) of generation n ⩾ 1 k̄ = (1, k2, . . . , kn)
First branching time T1̄

Lifespan of a particle Tk̄ − Tk̄−
Birth time of the particle k̄ Tk̄−
Death time of the particle k̄ ∈ K◦ Tk̄ = Tk̄− + τn,πn(k̄)

Death time of the particle k̄ ∈ K∂ Tk̄ = Tk̄− + τR(X
k̄−
Tk̄−,x)

Position at birth of the particle k̄ X k̄
Tk̄−,x

Position at death of the particle k̄ X k̄
Tk̄,x

Mark of the particle k̄ θk̄
Exit time starting from x ∈ B(0, R) τR(x) := inf {t ⩾ 0 : x+Xt ̸∈ B(0, R)}

Figure 1 represents the marking and labeling conventions used for the graphical
representation of random marked trees, in which different colors represent different
ways of branching.

time
position

time
position

...

...

label
mark

...

...
label

mark

labelmark

time
position

label

mark

Figure 1. Tree labeling and marking conventions.
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A sample tree for the PDE

∆αu(t, x) + c(0,0)(x) + c(0,1)(x)u(t, x)
∂u

∂x
(t, x) = 0

in dimension d = 1 is presented in Figure 2. Absence of branching is represented
in blue, branching into two branches, one bearing the mark 0 and the other bearing
the mark 1, is represented in purple, and the black color is used for leaves, i.e. for
particles that die outside of the domain B(0, R).

0
x

T1̄

X 1̄
T1̄,x

T(1,2)

X
(1,2)
T(1,2),x

T(1,2,2)

X
(1,2,2)
T(1,2,2),x

(1, 2, 2)

1

T(1,2,1) := T(1,2) + τR(X
(1,2,1)
T(1,2,1),x

)

X
(1,2,1)
T(1,2,1),x

(1, 2, 1)

0

(1, 2)

1

T(1,1)

X
(1,1)
T(1,1),x

(1,
1)

0

1̄

0

Figure 2. Tree labeling and marking conventions.

In Figure 2 we have K◦ = {1̄, (1, 1), (1, 2), (1, 2, 2)} and K∂ = {(1, 2, 1)}.

4. PROBABILISTIC REPRESENTATION OF PDE SOLUTIONS

We consider the weight functionW(t, x,X) defined as

W(t, x,X) :=WB(0,R)(x,Xt,x)1{Xt,x∈B(0,R)}(4.1)

+W∂B(0,R)(x,XτR(x),x)1{Xt,x ̸∈B(0,R)}

for x ∈ B(0, R). We note that the products involved in the definition (4.2) of
Hϕ(Tx,i) below are almost surely finite since the interbranching times Tk̄ − Tk̄−
are identically distributed and the number of offsprings at any branching time is
bounded by a constant depending only on the finite set Lm.

DEFINITION 4.1. We define the functional Hϕ of the random tree Tx,i with
initial mark θ1̄ = i ∈ {0, . . . ,m} as
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(4.2)

Hϕ(Tx,i) :=
∏

k̄∈K◦

cIk̄(X
k̄
Tk̄,x

)W k̄
Tk̄−,x

qIk̄ρ(Tk̄ − Tk̄−)
∏

k̄∈K∂

ϕ(X k̄
Tk̄,x

)W k̄
Tk̄−,x

F (Tk̄ − Tk̄−)
, x ∈ B(0, R),

where for k̄ ∈ K◦ ∪ K∂ we let

(4.3)

W k̄
Tk̄−,x

:=

{
1 if θk̄ = 0,

bθk̄(X
k̄
Tk̄−,x

) · W(Tk̄ − Tk̄−, X k̄
Tk̄−,x

, X k̄) if θk̄ = 1, . . . ,m,

where θk̄ ∈ {0, . . . ,m} denotes the mark of the particle k̄.

ASSUMPTION (B). Let α ∈ (1, 2) and d ⩾ 2. The common probability den-
sity function ρ and the tail distribution function F of the random times τ i,j satisfy
the conditions

sup
t∈(0,1]

1

ρ(t)tp/α
<∞ and E[(F (τR(0)))1−p] <∞

for some p ∈ (1, d).

When α ∈ (1, 2) and R is sufficiently small, Assumption (B) is satisfied by
any continuous probability density function ρ(t) such that

ρ(t) ∼
t→0

κtδ−1

for some δ ∈ (0, 1− p/α] and κ > 0, and 1/F (x) ⩽ eκx, x ⩾ 0, for some κ > 0
(see, e.g., [8, Lemma 6]). This includes for example a gamma distribution with
shape parameter δ ∈ (0, 1−p/α]. The goal of this section is to prove the following
result, which implies Theorem 1.1.

THEOREM 4.1. Let α ∈ (1, 2) and d ⩾ 2. Under Assumptions (A)–(B), if
R > 0 and maxl∈Lm ∥cl∥∞ are sufficiently small, then the semilinear elliptic PDE
(1.2) admits a classical solution in Cα+ϵ(B(0, R))∩C0(B(0, R)) for some ϵ > 0,
which is the unique viscosity solution of (1.2) and can be represented as

(4.4) u(x) := E[Hϕ(Tx,0)], x ∈ B(0, R).

Before giving the proof of Theorem 4.1 at the end of this section, we need
to state and prove Propositions 4.1 and 4.2 below. First, in Proposition 4.1 we
obtain a probabilistic representation for the solutions of semilinear elliptic PDEs
of the form (1.2) under uniform integrability conditions on (Hϕ(Tx,i))x∈B(0,R),
i = 0, . . . ,m. Then, in Proposition 4.2 we show that such conditions are satisfied
under Assumptions (A)–(B).
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PROPOSITION 4.1. Let α ∈ (1, 2) and d ⩾ 2, and assume that the family
(H(Tx,i))x∈B(0,R) is uniformly integrable for i = 0, . . . ,m. Then the function
u(x) defined as

u(x) := E[Hϕ(Tx,0)], x ∈ B(0, R),

is a viscosity solution in C1(B(0, R)) ∩ C0(B(0, R)) of (1.2). In addition, the
gradient bi(x) · ∇u(x) can be represented as the expected value

bi(x) · ∇u(x) = E[Hϕ(Tx,i)], x ∈ B(0, R), i = 1, . . . ,m.

Proof. Let

vi(x) := E[Hϕ(Tx,i)], x ∈ B(0, R), i = 1, . . . ,m.

By considering the first branching at time T1̄ and letting T (j)

X 1̄
T1̄,x

,i
, j = 1 + l0 +

· · · + li−1, . . . , l0 + · · · + li, denote independent tree copies started at X 1̄
T1̄,x

with
the mark i ∈ {0, . . . ,m}, we have

(4.5) u(x) = E[Hϕ(Tx,0)]

= E
[
1{T1̄=τR(x)}

ϕ(X 1̄
τR(x),x)

F (T1̄)

+ 1{T1̄<τR(x)}
∑

l∈Lm
1{I1̄=(l0,...,lm)}

cI1̄(X
1̄
T1̄,x

)

qI1̄ρ(T1̄)

m∏
i=0

l0+···+li∏
j=1+l0+···+li−1

Hϕ(T
(j)

X 1̄
T1̄,x

,i
)

]

= E
[
ϕ(X 1̄

τR(x),x) +
τR(x)∫

0

∑
l∈Lm

cl(X
1̄
t,x)u

l0(X 1̄
t,x)

m∏
i=1

vlii (X
1̄
t,x) dt

]
= E[ϕ(X 1̄

τR(x),x)] + E
[τR(x)∫

0

h(X 1̄
t,x) dt

]
,

where u(x) and the function

h(x) :=
∑

l∈Lm
cl(x)u

l0(x)
m∏
i=1

vlii (x), x ∈ B(0, R),

are bounded continuous on B(0, R) by Lemma 4.3. Hence by Lemmas 2.1 and
4.3 the function u is differentiable in B(0, R), with

∇u(x) = ∇E[ϕ(X 1̄
τR(x),x)] +∇E

[τR(x)∫
0

h(X 1̄
t,x) dt

]
= E[W∂B(0,R)(x,X

1̄
τR(x),x)ϕ(X

1̄
τR(x),x)] + E

[τR(x)∫
0

WB(0,R)(x,X
1̄
t,x)h(X

1̄
t,x) dt

]
= E[Hϕ(Tx,0)W(T1̄, x,X)],
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and by (4.3)–(4.2) we have

bi(x) · ∇u(x) = E[Hϕ(Tx,0) bi(x) · W(T1̄, x,X)]

= E[Hϕ(Tx,i)]
= vi(x), x ∈ B(0, R), i = 1, . . . ,m.

Therefore, using (1.3), we can rewrite (4.5) as

u(x) = E
[
ϕ(X 1̄

τR(x),x) +
τR(x)∫

0

f
(
X 1̄

t,x, u(X
1̄
t,x),∇u(X 1̄

t,x)
)
dt
]
, x ∈ B(0, R).

It then follows from a classical argument that u is a viscosity solution of (1.2).
Indeed, for any δ > 0, by the Markov property we also have

u(x)=E
[
u(X 1̄

δ∧τR(x),x)+
δ∧τR(x)∫

0

f
(
X 1̄

t,x, u(X
1̄
t,x),∇u(X 1̄

t,x)
)
dt
]
, x∈B(0, R).

Next, let ξ ∈ C2(B(0, R)) be such that x is a maximum point of u − ξ and
u(x) = ξ(x). By the Itô–Dynkin formula, we get

E[ξ(X 1̄
δ∧τR(x),x)] = ξ(x) + E

[δ∧τR(x)∫
0

∆αξ(X
1̄
t,x) dt

]
.

Thus, since u(x) = ξ(x) and u ⩽ ξ, we find

E
[δ∧τR(x)∫

0

(
∆αξ(X

1̄
t,x) + f

(
X 1̄

t,x, u
(
X 1̄

t,x

)
,∇u(X 1̄

t,x)
))
dt
]
⩾ 0.

Since Xt,x converges in distribution to the constant x ∈ Rd as t → 0, it admits
an almost surely convergent subsequence, hence by continuity and boundedness of
f(·, u(·)) together with the mean-value and dominated convergence theorems, we
have

∆αξ(x) + f(x, ξ(x),∇ξ(x)) ⩾ 0,

hence u is a viscosity subsolution (and similarly a viscosity supersolution)
of (1.2). ■

The proof of the next lemma uses the filtration (Fn)n⩾1 defined by

Fn := σ
(
Tk̄, Ik̄, X

k̄, k̄ ∈
n⋃

i=1

Ni
)
, n ⩾ 1.

Recall that K◦i (resp. K∂
i ), i = 1, . . . , n + 1, denotes the set of ith generation

particles which die inside (resp. outside) the domain B(0, R), and Kn = K◦n∪K∂
n.
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LEMMA 4.1. Given p ⩾ 1, let v : B(0, R) → R+ be a bounded measurable
function satisfying

v(x) ⩾ K1E[(F (τR(x)))1−p]

+ E
[τR(x)∫

0

(
Kp

21[0,1](t)ρ(t) + K̃p
21(1,∞)(t)

) ∑
l=(l0,...,lm)∈Lm

v|l|(X 1̄
t,x)

qp−1l

dt

]
for all x ∈ B(0, R) and some K1,K2, K̃2 > 0, where |l| = l0 + · · ·+ lm. Then
(4.6)

v(x) ⩾ E
[ ∏
k̄∈K∂

K1

F
p
(Tk̄ − Tk̄−)

∏
k̄∈K◦

Tk̄−Tk̄−⩽1

Kp
2

qpIk̄

∏
k̄∈K◦

Tk̄−Tk̄−>1

K̃p
2

qpIk̄
ρp(Tk̄ − Tk̄−)

]

for all x ∈ B(0, R).

Proof. Since T1̄ is independent of (X 1̄
s,x)s⩾0 and has probability density ρ,

letting

g(y) :=
∑

l=(l0,...,lm)∈Lm

y|l|

qp−1l

we have

v(x)

⩾ E
[
K1(F (τR(x)))

1−p +
τR(x)∫

0

(
Kp

21[0,1](t)ρ(t) + K̃p
21(1,∞)(t)

)
g(v(X 1̄

t,x)) dt
]

= E
[
E
[
K1(F (τR(x)))

1−p

+
τR(x)∫

0

(
Kp

21[0,1](t)ρ(t) + K̃p
21(1,∞)(t)

)
g(v(X 1̄

t,x)) dt
∣∣∣ (X 1̄

s,x)s⩾0

]]
= E

[
E
[

K1

F
p
(τR(x))

1{T1̄=τR(x)}

+
τR(x)∫

0

(
Kp

21[0,1](t) +
K̃p

2

ρ(t)
1(1,∞)(t)

)
g(v(X 1̄

t,x))ρ(t) dt

∣∣∣∣ (X 1̄
s,x)s⩾0

]]
= E

[
K1

F
p
(τR(x))

1{T1̄=τR(x)}

+Kp
2g(v(X

1̄
T1̄,x

))1{T1̄⩽min(1,τR(x))} +
K̃p

2

ρ(T1̄)
g(v(X 1̄

T1̄,x
))1{1<T1̄<τR(x)}

]
= E

[
K1

F
p
(T1̄)

1{T1̄=τR(x)}

+
1

qpI1̄

(
Kp

21{T1̄⩽min(1,τR(x))} +
K̃p

2

ρ(T1̄)
1{1<T1̄<τR(x)}

)
v|I1̄|(X 1̄

T1̄,x
)

]
,
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showing that

(4.7) v(x) ⩾ E
[ ∏
k̄∈K∂

1

K1

F
p
(Tk̄ − Tk̄−)

∏
k̄∈K◦1

Tk̄−Tk̄−⩽1
K

p
2

q
p
Ik̄

×
∏

k̄∈K◦1
Tk̄−Tk̄−>1

K̃p
2

qpIk̄
ρp(Tk̄ − Tk̄−)

∏
k̄∈K2

v(X k̄
Tk̄−,x

)

]

for x ∈ B(0, R). By repeating this argument for the particles in k̄ ∈ K2, we find

v(X k̄
Tk̄−,x

) ⩾ E
[

K1

F
p
(Tk̄ − Tk̄−)

1{X k̄
Tk̄,x /∈B(0,R)}

+
1

qpIk̄

(
Kp

21{Tk̄−Tk̄−⩽min(1,τR(x))} +
K̃p

2

ρp(Tk̄ − Tk̄−)
1{1<Tk̄−Tk̄−<τR(x)}

)
× v|Ik̄|(X k̄

Tk̄,x
)

∣∣∣∣ F1].
Plugging this expression in (4.7) above and using the tower property of the condi-
tional expectation, we obtain

v(x) ⩾ E
[ ∏
k̄∈

⋃2
i=1K

∂
i

K1

F
p
(Tk̄ − Tk̄−)

∏
k̄∈

⋃2
i=1K

◦
i

Tk̄−Tk̄−⩽1

Kp
2

qpIk̄

×
∏

k̄∈
⋃2

i=1K
◦
i

Tk̄−Tk̄−>1

K̃p
2

qpIk̄
ρp(Tk̄ − Tk̄−)

∏
k̄∈K4

v(X k̄
Tk̄−,x

)

]
,

and repeating this process inductively leads to

v(x) ⩾ E
[ ∏
k̄∈

⋃n
i=1K

∂
i

K1

F
p
(Tk̄ − Tk̄−)

∏
k̄∈

⋃n
i=1K

◦
i

Tk̄−Tk̄−⩽1

Kp
2

qpIk̄

×
∏

k̄∈
⋃n

i=1K
◦
i

Tk̄−Tk̄−>1

K̃p
2

qpIk̄
ρp(Tk̄ − Tk̄−)

∏
k̄∈Kn+1

v(X k̄
Tk̄−,x

)

]

for n ⩾ 1. Using Fatou’s lemma as n → ∞, since all particles become eventually
extinct with probability 1, we obtain (4.6). ■
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LEMMA 4.2. Let α ∈ (1, 2), p ∈ [1, d), d ⩾ 2, and set

b0,∞ := max
1⩽i⩽m

sup
x∈B(0,R)

|bi(x)|, b1,∞ := max
1⩽i⩽m

sup
x∈B(0,R)

|bi(x)|
R− |x|

.

Under Assumptions (A)–(B), we have

(4.8) E[|Hϕ(Tx,i)|p] ⩽ E
[ ∏
k̄∈K∂

K1

F
p
(Tk̄ − Tk̄−)

∏
k̄∈K◦

Tk̄−Tk̄−⩽1

K4maxl∈Lm ∥cl∥
p
∞

qpIk̄

×
∏

k̄∈K◦
Tk̄−Tk̄−>1

K3maxl∈Lm ∥cl∥
p
∞

qpIk̄
ρp(Tk̄ − Tk̄−)

]

for x ∈ B(0, R), i = 0, . . . ,m, where

K1 := ∥ϕ∥p∞(1 + (d+ α)pbp1,∞), K3 := 1 + dpbp1,∞ + dpbp0,∞Cα,d,p,(4.9)

K4 := sup
t∈[0,1]

1 + dpbp1,∞
ρp(t)

+ dpbp0,∞ sup
t∈[0,1]

Cα,d,p

ρp(t)tp/α
.(4.10)

Proof. For x ∈ B(0, R), let

(4.11) wi(x) :=E[|Hϕ(Tx,i)|p]

=Ei

[ ∏
k̄∈K◦

|cIk̄(X
k̄
Tk̄,x

)|p|W k̄
Tk̄−,x
|p

qpIk̄
ρp(Tk̄−Tk̄−)

∏
k̄∈K∂

|ϕ(X k̄
Tk̄,x

)|p|W k̄
Tk̄−,x
|p

F
p
(Tk̄−Tk̄−)

]
,

where Ei denotes the conditional expectation given that the tree Tx,i is started with
the mark i ∈ {0, . . . ,m}. When k̄ ∈ K◦ has mark θk̄ = 0 we haveW k̄

Tk̄−,x
= 1,

whereas when θk̄ ̸= 0, using (2.4), (4.1)–(4.3) and the Cauchy–Schwarz inequality,
we have

|W k̄
Tk̄−,x
| ⩽

d|bθk(X k̄
Tk̄−,x

)|

min(R− |X k̄
Tk̄−,x
|, |X k̄

Tk̄,x
−X k̄

Tk̄−,x
|)

⩽ dmax

( |bθk(X k̄
Tk̄−,x

)|

R− |X k̄
Tk̄−,x
|
,
|bθk(X k̄

Tk̄−,x
)|

|X k̄
Tk̄,x
−X k̄

Tk̄−,x
|

)
⩽ db1,∞ +

db0,∞

|X k̄
Tk̄,x
−X k̄

Tk̄−,x
|
.

Similarly, when k̄ ∈ K∂ , the definition of W∂B(0,R)(x, y) in (2.6), together with
the bound (2.3) and the Cauchy–Schwarz inequality, implies

(4.12) |W k̄
Tk̄−,x
| ⩽ (d+ α)b1,∞.
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Next, by conditional independence given G := σ(τ i,j , Ii,j : i, j ⩾ 1) of the terms
in the product over k̄ ∈ K◦ and k̄ ∈ K∂ , which involve random terms of the form
X k̄

Tk̄,x
−X k̄

Tk̄−,x
given Tk̄ − Tk̄−, by (2.5) and (4.11)–(4.12) we have

wi(x)

⩽ E
[ ∏
k̄∈K◦

∥cIk̄∥
p
∞

qpIk̄
E
[

2p

ρp(Tk̄ − Tk̄−)

(
1 + dpbp1,∞ +

dpbp0,∞

|X k̄
Tk̄,x
−X k̄

Tk̄−,x
|p

) ∣∣∣∣ G]

×
∏

k̄∈K∂

E
[

K1

F
p
(Tk̄ − Tk̄−)

∣∣∣∣ G]]
= E

[ ∏
k̄∈K◦

( ∥cIk̄∥
p
∞

qpIk̄
ρp(Tk̄ − Tk̄−)

(
1 + dpbp1,∞ +

dpbp0,∞Cα,d,p

(Tk̄ − Tk̄−)p/α

))
×

∏
k̄∈K∂

K1

F
p
(Tk̄ − Tk̄−)

]
.

Splitting the terms in the product over k̄ ∈ K◦ between small and large values of
Tk̄ − Tk̄−, we get

wi(x) ⩽ E
[ ∏
k̄∈K◦

∥cIk̄∥
p
∞

qpIk̄

(
K3

ρp(Tk̄ − Tk̄−)
1{Tk̄−Tk̄−>1} +K41{Tk̄−Tk̄−⩽1}

)
×

∏
k̄∈K∂

K1

F
p
(Tk̄ − Tk̄−)

]
for x ∈ B(0, R), which yields (4.8), for i = 0, . . . ,m. ■

Proposition 4.2 provides sufficient conditions for the finiteness of the upper
bound (4.8), and for (Hϕ(Tx,i))x∈B(0,R) to be bounded in L1(Ω), uniformly in
x ∈ B(0, R), i = 0, . . . ,m, as required in Proposition 4.1.

PROPOSITION 4.2. Let α ∈ (1, 2), p ∈ [1, d), and d ⩾ 2. Under Assump-
tions (A)–(B), suppose that ϕ is bounded on Rd and there exists a bounded strictly
positive weak solution v ∈ Hα/2(Rd)∩L∞(Rd) to the partial differential inequal-
ity

(4.13)

∆αv(x) + K̃2

∑
l∈Lm

v|l|(x)

qp−1l

⩽ 0, x ∈ B(0, R),

v(x) ⩾ K̃1 > 0, x ∈ Rd \B(0, R),

where K̃1 ⩾ K1E[F
1−p

(τR(0))], K1 > 0 is given by (4.9), and K̃2 > 0. Then for
sufficiently small maxl∈Lm ∥cl∥∞ we have the bound

(4.14) E[|Hϕ(Tx,i)|p] ⩽ v(x) ⩽ ∥v∥∞ <∞, x ∈ B(0, R), i = 0, . . . ,m.
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Proof. We smooth out v ∈ Hα/2(Rd) as

vε(x) :=
1

ε

∞∫
−∞

ψ

(
x− y
ε

)
v(y) dy, x ∈ R, ε > 0,

where ψ : R → R+ is a mollifier such that
∫∞
−∞ ψ(y) dy = 1. By (4.13) and

Jensen’s inequality, we have

∆αvε(x) + K̃2

∑
l∈Lm

v
|l|
ε (x)

qp−1l

=
1

ε

∞∫
−∞

∆αψ

(
x− y
ε

)
v(y) dy + K̃2

∑
l∈Lm

1

qp−1l

(
1

ε

∞∫
−∞

ψ

(
x− y
ε

)
v(y) dy

)|l|
⩽

1

ε

∞∫
−∞

ψ

(
x− y
ε

)
∆αv(y) dy + K̃2

∑
l∈Lm

1

εqp−1l

∞∫
−∞

ψ

(
x− y
ε

)
v|l|(y) dy

=
1

ε

∞∫
−∞

ψ

(
x− y
ε

)(
∆αv(y) + K̃2

∑
l∈Lm

v|l|(y)

qp−1l

)
dy

⩽ 0, x ∈ B(0, R).

Applying the Itô–Dynkin formula to vε(Xs,x) with vε ∈ Hα(Rd), by (4.13) we
have

vε(x) = E
[
vε(X

x
τR(x))−

τR(x)∫
0

∆αvε(Xt,x) dt
]

⩾ E
[
K̃1 +

τR(x)∫
0

K̃2

∑
l∈Lm

v
|l|
ε (Xt,x)

qp−1l

dt

]
, x ∈ B(0, R).

Thus, passing to the limit as ε tends to zero, by dominated convergence and the
facts that E[τR(x)] <∞ and v(x) is upper and lower bounded in (0,∞), for some
sufficiently small K2 > 0 we have

v(x) ⩾ K̃1 + E
[τR(x)∫

0

K̃2

∑
l∈Lm

v|l|(Xt,x)

qp−1l

dt

]
⩾ K1E[F

1−p
(τR(0))]

+ E
[τR(x)∫

0

(Kp
21[0,1](t)ρ(t) + K̃p

21(1,∞)(t))
∑

l∈Lm

v|l|(Xt,x)

qp−1l

dt

]
,

⩾ K1E[F
1−p

(τR(x))]

+ E
[τR(x)∫

0

(Kp
21[0,1](t)ρ(t) + K̃p

21(1,∞)(t))
∑

l∈Lm

v|l|(Xt,x)

qp−1l

dt

]
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for x ∈ B(0, R), as the function F 1−p is non-decreasing. Hence by Lemmas 4.1
and 4.2, for K3, K4 given in (4.9)–(4.10) we have, provided that maxl∈Lm ∥cl∥∞
is sufficiently small,

v(x) ⩾ E
[ ∏
k̄∈K∂

K1

F
p
(Tk̄ − Tk̄−)

∏
k̄∈K◦

Tk̄−Tk̄−⩽1

Kp
2

qpIk̄

∏
k̄∈K◦

Tk̄−Tk̄−>1

K̃p
2

qpIk̄
ρp(Tk̄ − Tk̄−)

]

⩾ E
[ ∏
k̄∈K∂

K1

F
p
(Tk̄ − Tk̄−)

∏
k̄∈K◦

Tk̄−Tk̄−⩽1

K4maxl∈Lm ∥cl∥
p
∞

qpIk̄

×
∏

k̄∈K◦
Tk̄−Tk̄−>1

K3maxl∈Lm ∥cl∥
p
∞

qpIk̄
ρp(Tk̄ − Tk̄−)

]

⩾ E[|Hϕ(Tx,i)|p]

for x ∈ B(0, R), i = 0, . . . ,m, which yields (4.14). ■

Proof of Theorem 4.1. By [26, Theorem 1.2], the partial differential inequality
(4.13) admits a positive (continuous) viscosity solution v(x) on Rd when R > 0 is
sufficiently small. In addition, by [26, Proposition 3.5], v ∈ Hα/2(Rd) ∩ L∞(Rd)
and v is a weak solution of (4.13). By Propositions 4.1 and 4.2, the PDE (1.2) ad-
mits a viscosity solution in C1(B(0, R)) ∩ C0(B(0, R)), which can be represented
as (4.4). Hence by [20, Theorem 1.2], ∇u and f(u,∇u) are in Cϵ(B(0, R)) for
some ϵ > 0, as the kernel of ∆α satisfies (1.11) therein. Therefore, by [29, Theo-
rem 1.3], the (unique) viscosity solution u is in Cα+ϵ(B(0, R)) ∩ C0(B(0, R)). ■

Lemma 4.3 extends [26, Lemma 3.3] from i = 0 to i ∈ {1, . . . ,m}.
LEMMA 4.3. Let i ∈ {0, . . . ,m}, and assume that (H(Tx,i))x∈B(0,R) is

uniformly integrable. Then the function vi(x) := E[Hϕ(Tx,i)] is continuous in
B(0, R).

Proof (given for completeness). Let x ∈ B(0, R). By [26, Lemma 3.2], for
any sequence (xn)n∈N in B(0, R) converging fast enough to x ∈ B(0, R) we have

P
(
lim
n→∞

τR(xn) = τR(x)
)
= 1,

and letting τk̄,x := τR(X
k̄−
Tk̄−,x

) for k̄ ∈ K, the event

Ak̄ :=
{
lim
n→∞

τk̄,xn
= τk̄,x

}
∩
{
lim
n→∞

X k̄
·,xn

= X k̄
·,x

}
has probability 1. Again, by [26, Lemma 3.2(a)], for some n0(ω) large enough we
have

X k̄
τk̄,xn

= X k̄
τk̄,x

+ xn − x,
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and τk̄,xn
= τk̄,x for n ⩾ n0(ω). Therefore, using the continuity of the functions

ϕ and cl, l ∈ L, we have

lim
n→∞

ϕ(X k̄
τk̄,xn

)W k̄
Tk̄−,xn

1{Tk̄=τk̄,xn}
= ϕ(X k̄

τk̄,x
)W k̄

Tk̄−,x
1{Tk̄=τk̄,x}, P-a.s.

and

lim
n→∞

cIk̄(X
k̄
Tk̄,xn

)W k̄
Tk̄−,xn

1{Tk̄<τk̄,xn}
=
cIk̄(X

k̄
Tk̄,x

)

qIk̄
W k̄

Tk̄−,x
1{Tk̄<τk̄,x}, P-a.s.

Hence by (4.2), on the event A :=
⋂

k̄∈KAk̄ of probability 1, we have

lim
n→∞
Hϕ(Txn,i(ω)) = Hϕ(Tx,i(ω)).

Therefore, for any sequence (xn)n⩾1 converging to x ∈ B(0, R) fast enough, we
have

P
(
lim
n→∞
Hϕ(Txn,i) = Hϕ(Tx,i(ω))

)
= 1,

which implies that limn→∞ vi(xn) = vi(x) by uniform integrability of
(Hϕ(Tx,i(ω)))x∈B(0,R). ■

5. NUMERICAL EXAMPLES

In this section, we consider numerical applications of the probabilistic representa-
tion (4.4). The paths of the α-stable process Xt = BSt are simulated by time dis-
cretization, by generating independent random samples of Brownian motion and
of the α/2-stable process (St)t∈R+ using the identity in distribution

St ≃ 2t2/α
sin(α(U + π/2)/2)

cos2/α(U)

(
cos(U − α(U + π/2)/2)

E

)−1+2/α

based on the Chambers–Mallows–Stuck (CMS) method, where U is uniform on
(−π/2, π/2), andE is exponential with unit parameter (see [33, (3.2)]). In order to
keep computation times to a reasonable level, the probability density ρ(t) of τ i,j ,
i, j ⩾ 1, is taken to be gamma with shape parameters ranging from 1.5 to 1.7. The
C codes used to plot Figures 4 and 6 are available at https://github.com/
nprivaul/fractional_elliptic.

Given k ⩾ 0, we consider the function

Φk,α(x) := (1− |x|2)k+α/2
+ , x ∈ Rd,

https://github.com/nprivaul/fractional_elliptic
https://github.com/nprivaul/fractional_elliptic


22 G. Penent and N. Privault

which is Lipschitz if k > 1 − α/2, and solves the Poisson problem ∆αΦk,α =
−Ψk,α on Rd with

Ψk,α(x) :=



Γ((d+α)/2)Γ(k+1+α/2)

2−αΓ(k+1)Γ(d/2)
2F1

(
d+α

2
,−k; d

2
; |x|2

)
, |x| ⩽ 1,

2αΓ((d+α)/2)Γ(k+1+α/2)

Γ(k+1+(d+α)/2)Γ(−α/2)|x|d+α

×2F1

(
d+α

2
,
2+α

2
; k+1+

d+α

2
;

1

|x|2

)
, |x| > 1,

for x ∈ Rd, where 2F1(a, b; c; y) is Gauss’s hypergeometric function (see [14,
(5.2)], [6, Lemma 4.1], and [17, (36)].

5.1. Linear gradient term. We take R = 1, m = 1, L1 = {(0, 0), (0, 1)}, and

c(0,0)(x) := Ψk,α(x) + (2k + α)|x|2(1− |x|2)k+α/2,

c(0,1)(x) := 1, b1(x) := (1− |x|2)x,

and consider the PDE

(5.1) ∆αu(x)+Ψk,α(x)+(2k+α)|x|2(1−|x|2)k+α/2+(1−|x|2)x·∇u(x) = 0

for x ∈ B(0, 1), with u(x) = 0 for x ∈ Rd \B(0, 1), and explicit solution

u(x) = Φk,α(x) = (1− |x|2)k+α/2
+ , x ∈ Rd.

The random tree associated to (5.1) starts at the point x ∈ B(0, 1), and branches
into 0 or 1 branch as in the random tree samples of Figure 3.

0
x

T1̄

X 1̄
T1̄,x

T(1,1)

X
(1,1)
T(1,1),x

T(1,1,1) := T(1,1) + τR(X
(1,1,1)
T(1,1,1),x

)

X
(1,1,1)
T(1,1,1),x

(1, 1, 1)

1

(1, 1)

1
1̄

0

0
x

T1̄

X 1̄
T1̄,x

T(1,1)

X
(1,1)
T(1,1),x

(1, 1)

1
1̄

0

Figure 3. Random tree samples for the PDE (5.1).

The simulations of Figures 4(a) and 4(b) use respectively 107 and 2 × 107 Monte
Carlo samples.
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-1.5 -1 -0.5  0  0.5  1  1.5
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Exact solution
Numerical solution

(a) Numerical solution of (5.1) with k = 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5  0  0.5  1  1.5
x1

Exact solution
Numerical solution

(b) Numerical solution of (5.1) with k = 1.

Figure 4. Numerical solution of (5.1) in dimension d = 10 with α = 1.75.

5.2. Nonlinear gradient term. In this example we take L1 = {(0, 0), (0, 2)},

c(0,0)(x) := Ψk,α(x) + (2k + α)2|x|4(1− |x|2)2k+α,

c(0,2)(x) := −1, b1(x) := (1− |x|2)x,

and consider the PDE with nonlinear gradient term

(5.2)
∆αu(x) +Ψk,α(x) + (2k+ α)2|x|4(1− |x|2)2k+α − ((1− |x|2)x · ∇u(x))2 = 0

for x ∈ B(0, 1), with u(x) = 0 for x ∈ Rd \B(0, R), and explicit solution

u(x) = Φk,α(x) = (1− |x|2)k+α/2
+ , x ∈ Rd.

The random tree associated to (5.2) starts at a point x ∈ B(0, 1) and branches
into 0 or 2 branches as in the random tree sample of Figure 5.

0
x

T1̄

X 1̄
T1̄,x T(1,2)

X
(1,2)
T(1,2),x T(1,2,2)

X
(1,2,2)
T(1,2,2),x

(1, 2, 2)

1

T(1,2,1) := T(1,2) + τR(X
(1,2,1)
T(1,2,1),x

)

X
(1,2,1)
T(1,2,1),x

(1, 2
, 1)

0

(1, 2)
1

T(1,1)

X
(1,1)
T(1,1),x

(1,
1)

0
1̄

0

Figure 5. Random tree sample for the PDE (5.2).

The simulations of Figure 6 use five million Monte Carlo samples.



24 G. Penent and N. Privault

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5  0  0.5  1  1.5
x1

Exact solution
Numerical solution

(a) Numerical solution of (5.2) with k = 0.
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 0.4

 0.6

 0.8

 1

 1.2
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Exact solution
Numerical solution

(b) Numerical solution of (5.2) with k = 2.

Figure 6. Numerical solution of (5.2) in dimension d = 10 with α = 1.75.
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