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1. INTRODUCTION

Measurements are frequently recorded without their algebraic sign. As a conse-
quence, the underlying distribution of measurements is replaced by a distribution
of absolute measurements, which results in what is known as the folded distribu-
tion. Hence a folded distribution arises when deviations are measured and only
the magnitude is recorded. The directions (signs) of the deviations are considered
unimportant and ignored in this case (see, [16, 18, 22]). For instance, in study-
ing material strength, the force required to fracture a material may be directional
(positive or negative), but only its absolute value is relevant in actually causing a
fracture. In X-ray crystallography, only the magnitude of radiation penetration can
be measured, even though the underlying physical process of diffraction involves
phase (signed) information. Without exaggeration, we can say that a wide range of
disciplines, including finance, economics, risk management, and tolerance design
heavily utilize folded distributions (see [21]).

Folded distributions are commonly referred to as half-normal, half-Student,
half-Cauchy distributions, etc. These distributions only retain (the positive) half
of the distribution, as the name implies. The fact that these “half” distributions are
centered at zero before folding is implied by their name. Naturally, though, a dis-
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tribution that is not centered at zero can still be folded. This is the definition of a
folded Student-t distribution, for example. A recent publication by Barakat et al.
[11] studies other folded distributions.

Switching between signed distributions, including symmetric distributions, and
their unsigned (folded) equivalents and seeing how the accompanying order statis-
tics (OSs) and record values relate to one another is helpful in a variety of real-
world scenarios. Mutangi and Matarise [20], for instance, studied the asymptotic
maximum in the scenario of Y = |X|, when X has a normal distribution (e.g.,
a parent distribution function (DF)), based on the generated folded random vari-
able (RV) Y . They provided a mechanism for figuring out norming constants or
the folded normal distribution’s maxima, and they showed that the Gumbel distri-
bution is the limiting distribution of the linearly normalized maxima from the gen-
erated folded normal distribution. The relationship between the asymptotic theory
of extremes, the folded normal distribution, and normal distribution has been uti-
lized. This discovery is of significance for modeling extreme events, especially in
time series where the identification of outliers is imperative. Recently, Barakat et
al. [11] studied the asymptotic maxima for the folded RV Y = |X|, where X has
an arbitrary continuous DF for which the asymptotic behavior of the extremes is
known.

Apart from the X-folding technique as a potential transformation of X , a com-
parable problem was examined for other generated distributions, or generalized
families of DFs (e.g., Y might be created by incorporating one or more shape pa-
rameters into the DF of X). For instance, the relationship between the weak con-
vergence of the parent distribution of X and the generated family (the DF of Y )
is revealed in the study conducted by Barakat et al. [9] on the asymptotic behavior
of the OSs and record values based on the gamma and Kumaraswamy-generated
distribution families. The class of beta-generated distributions (see [8]) and the
Marshall–Olkin parameterization operation (see [6]) are two more distributions
that have been studied.

The main object of this paper is to extend the results of [11] to the intermediate
and record values models. There is a resemblance between these two models of
ordered RVs because they have the same possible limit distributions. In the next
section, we will shed some light on these two models. Throughout this paper, the
symbols “−→n ” and “ w−→n ” stand for convergence and weak convergence, as n→∞,
respectively.

2. AUXILIARY RESULTS

In this section, we will discuss the intermediate OSs and record values models in
more detail and highlight some of the requirements for this study.

2.1. Limit distributions of intermediate OSs. Let X1, . . . , Xn be mutually in-
dependent RVs with a common continuous DF F (x) = P (X ¬ x). Let
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Xkn:n := Xk:n represent the kth smallest OSs. A rank sequence {k} is called an in-
termediate rank and the sequence {Xk} is called an intermediate OS if k/n −→n 0
or 1. Intermediate OSs have many applications. Value-at-risk, for instance, is a
valuable metric in risk management. Intermediate quantiles are helpful when ana-
lyzing low-frequency, high-severity losses in insurance and finance. In this context,
Csörgő and Steinebach [14] applied intermediate OSs to estimate the adjustment
coefficient in risk theory. On the other hand, estimating tail values like the interme-
diate quantile and the tail index can be done using intermediate OSs. In statistical
theory, they can be used to estimate probabilities of future extreme observations
and to estimate tail quantiles of the underlying distribution that are extremes rel-
ative to the available sample size. Many authors (see, e.g., [19, 25]) have found
estimators that are based, in part, on intermediate OSs. The theory of asymptotic
intermediate OSs belongs to the theory of limit OSs with variable rank k, where
k/n −→n λ, 0 ¬ λ ¬ 1. The theory of limit OSs with variable rank k has been
the subject of study by various researchers, including [3, 4, 5, 13, 24, 26]. Smirnov
[24] demonstrated that, for any non-decreasing variable rank k, there are constants
an > 0 and bn such that

(2.1) P (Xk:n ¬ anx+ bn) = Fk:n(anx+ bn) = IFX(anx+bn)(k, n− k + 1)
w−→n G(x)

for some DF G(x), where Ix(·, ·) is the beta DF, if and only if

(2.2)
nFX(anx+ bn)− k√

k(1− k/n)
−→n Λ(x).

The function Λ(x) is a non-decreasing right continuous and extended-real function
satisfying limx→−∞ Λ(x) = −∞, limx→∞ Λ(x) = ∞, and the limit in (2.1) will
be G(x) = Φ(Λ(x)), where Φ is the standard normal DF. The variable ranks are
classified into intermediate (lower or upper) and central ranks. Here, we will review
some theorems for the case of intermediate OSs.

THEOREM 2.1 (Lower intermediate OSs value theorem, [13]). Let k∗ :=
k/n −→n 0. Furthermore, let the intermediate rank k satisfy Chibisov’s condition
(see [13]) that for some 0 < α < 1, ℓ > 0, and ν ∈ R we have

lim
n→∞

(
√

kn+zn(ν) −
√
kn) =

ανℓ

2

for any sequence of integer numbers zn for which zn(ν)

n1−α/2 −→n ν. Then (2.2) is
reduced to

(2.3) Vn(anx+ bn) =
nFX(anx+ bn)− k√

k
=

FX(anx+ bn)− k∗√
k∗/n

−→n V (x).
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According to [13], the only possibilities for V (x) in (2.3) are Vi,β(x), i = 1, 2, 3,
such that

(2.4)

Type I: V1,β(x) =

{−β log |x|, x < 0,

∞, x ­ 0,

Type II: V2,β(x) =

{
β log x, x > 0,

−∞, x ¬ 0,

Type III: V3,β(x) = V3(x) = x, ∀x,

where β > 0 is some positive constant depending only on the type of FX(x) and
the values of α and ℓ.

REMARK 2.1. Chibisov [13] noted that the Chibisov condition implies
k ∼ ℓ2nα as n → ∞. Barakat and Omar [10] showed that the latter condition
implies Chibisov’s condition. The result of [10] reveals that the class of intermedi-
ate rank sequences that satisfy Chibisov’s condition is very wide, and consequently
the Chibisov limit types are widely applicable.

In what follows, we write (ai,n, bi,n), ai,n > 0, for the normalizing constants
that are utilized, where the subscript i equals 1, 2, or 3, depending on whether there
is weak convergence to the type G1,β(x) = Φ(V1,β(x)), G2,β(x) = Φ(V2,β(x)),
or G3(x) = Φ(V3(x)), respectively. We will say that F is attracted to the domain
of attraction of Gi,β(x) and write FX ∈ DL(Gi,β(x)), or FX(ai,nx + bi,n) ∈
DL(Gi,β(x)).

LEMMA 2.1 (cf. [13]).

(1) If FX(a1,nx+ b1,n) ∈ DL(G1,β(x)), then a1,n −→n ∞ and b1,n = 0.

(2) If FX(a2,nx + b2,n) ∈ DL(G2,β(x)), then a2,n −→n 0 and b2,n = x0,
FX(x0) = 0.

(3) FX(a3,nx + b3,n) ∈ DL(G3(x)) if and only if b3,n is the smallest number for
which FX(b3,n − 0) ¬ k/n ¬ FX(b3,n), and b3,n satisfies the condition

b3,n+zn − b3,n
b3,n+z′n − b3,n

−→n
ν

µ
, where

zn

n1−α/2 −→n ν and
z′n

n1−α/2 −→n µ.

In this case, a3,n may be chosen as the smallest number satisfying

FX(a3,n + b3,n − 0) ¬ k +
√
k

n
¬ FX(a3,n + b3,n).

The corresponding possible non-degenerate limiting distributions for the upper
intermediate term Xk′:n, where k′ = n − k + 1, are G′(x) = 1 − Φ(Vi(−x; β)),
i = 1, 2, 3. Moreover, we get the limit G′(x) if and only if

Un(cnx+ dn) =
nFX(cnx+ dn)− k√

k
=

FX(cnx+ dn)− k∗√
k∗/n

−→n U(x),
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where k∗ = k/n, FX(x) = 1− FX(x), and U(x) is defined by the equation

G′(x) = Φ(−U(x)) = 1− Φ(U(x)).

THEOREM 2.2. The proper limit distributions for the variables Xk′;n when
n→∞, k′ = n− k+ 1, and k satisfies the Chibisov condition can be only one of
the three types:

(2.5)

Type I: U1,β′(x) =

{−β′ log x, x > 0,

∞, x ¬ 0,

Type II: U2,β′(x) =

{
β′ log |x|, x < 0,

−∞, x ­ 0,

Type III: U3,β′(x) = U3(x) = −x, ∀x,

where β′ > 0 is some positive constant depending only on the type of FX(x) and
the values of α and ℓ.

In the following, we write (ci,n, di,n), ci,n > 0, for the normalizing constants
that are utilized, where the subscript i equals 1, 2, or 3, and it depends on whether
there is weak convergence to the type G′1,β′(x), G

′
2,β′(x), or G′3(x), respectively.

We will say that FX(x) is attracted to the domain of G′i,β′(x) and write FX(x) ∈
DU (G

′
i,β′(x)), or FX(ci,nx+ di,n) ∈ DU (G

′
i,β′(x)).

LEMMA 2.2.

(1) If FX(c1,nx+ d1,n) ∈ DU (G
′
1,β′(x)), then c1,n −→n ∞ and d1,n = 0.

(2) If FX(c2,nx + d2,n) ∈ DU (G
′
2,β′(x)), then c2,n −→n 0 and d2,n = x0,

FX(x0) = 0.

(3) FX(c3,nx+ d3,n) ∈ DU (G
′
3(x)) if and only if d3,n is the smallest number for

which FX(d3,n + 0) ¬ k/n ¬ FX(d3,n), and d3,n satisfies

d3,n+rn(ν) − d3,n

d3,n+rn(µ) − d3,n
−→n

ν

µ
, where

rn(ν)

n1−α/2 −→n ν and
rn(µ)

n1−α/2 −→n µ.

2.2. Some required results on record values. Record values naturally occur in
many real-world scenarios, and only those may be recorded in certain circum-
stances, such as those involving hydrology, meteorology, and sports and athletic
events. Chandler [12] is credited with introducing the concept of record values to
model data of extreme weather situations. The record value model can also be used
in other contexts, such as reliability theory, the greatest water level or temperature,
and progressively larger insurance claims in non-life insurance. For more details
about this model, see [1, 2, 7].

Let X1, X2, . . . be an infinite sequence of independent identically distributed
(i.i.d.) RVs. If Xj > Xi for each i < j, then an observation Xj is considered
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an upper record value; a similar definition applies to lower record values. X1 is
typically an upper record value as well as a lower record value. The upper record
value sequence Rn can be characterized by Rn = XNn , where Nn = min {j :
j > Nn−1, Xj > XNn−1} (note that N1 = 1) is the upper record time se-
quence. The DF of the upper record value can be expressed in terms of the function
UF (x) = − logFX(x) = − log(1− FX(x)). Thus, we obtain the following gen-
eral results.

LEMMA 2.3 (cf. [15]). A DF FX(x) is said to belong to the domain of up-
per record value attraction of a non-degenerate DF Ψ(x), written FX(x) ∈
Durec(Ψ(x)), if there exist normalizing constants An > 0 and Bn such that

(2.6) P (Rn ¬ Anx+Bn) = FRn(Anx+Bn)
w−→n Ψ(x).

Condition (2.6) is satisfied if and only if

(2.7)
UF (Anx+ bn)− n√

n
−→n Φ−1(Ψ(x)) = R(x).

The following result, dating back to Resnick [23], establishes different forms of
the limit Ψ(x), as well as a condition under which (2.6) is obtained. Additionally,
three possible distribution types may appear as limiting distributions of suitable
normalized record value, which are Ψi,β(x) = Φ(Ri,β(x)), i = 1, 2, 3, where
Ψ3,β(x) = Ψ3(x) and

(2.8)

Type I: R1(x, β) =

{−∞, x ¬ 0,

β log x, x > 0, β > 0,

Type II: R2(x, β) =

{−β log(−x), x ¬ 0, β > 0,

∞, x > 0,

Type III: R3(x, β) = R3(x) = x, −∞ < x <∞.

REMARK 2.2. Sometimes we write (Ai,n, Bi,n), Ai,n > 0, for the normaliz-
ing constants, where the subscript i equals 1, 2, or 3, according to the weak con-
vergence to the type Ψ1,β(x), Ψ2,β(x), or Ψ3(x), respectively. Moreover, when
focusing on some specific normalizing constants Ai,n > 0 and Bi,n, we use the
notation FX(Ai,nx+Bi,n) ∈ Durec(Ψi,β(x)) instead of FX ∈ Durec(Ψi,β(x)).

LEMMA 2.4 (cf. [2]).

(1) If FX(A1,nx + B1,n) ∈ Durec(Ψ1,β(x)), then A1,n = F−1X (1 − e−n) and
B1,n = 0.

(2) If FX(A2,nx+B2,n) ∈ Durec(Ψ2,β(x)), then A2,n = F−1X (1)−F−1X (1−e−n)

and B2,n = F−1X (1), where FX(x0) = 1.

(3) If FX(A3,nx + B3,n) ∈ Durec(Ψ3(x)), then A3,n = F−1X (1 − e−n−
√
n) −

F−1X (1− e−n) and B3,n = F−1X (1− e−n).
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3. ASYMPTOTIC BEHAVIOR OF THE INTERMEDIATE OSs OF A FOLDED
DISTRIBUTION

In this section, we study the asymptotic behavior of the intermediate OSs of a
folded distribution. Here, we begin with a well-known basic lemma.

LEMMA 3.1. Let FX(x) be the DF of the RV X with support {x : −∞ ¬ x0 ¬
x ¬ x0 ¬ ∞}. Then

F|X|(x) = P (|X| ¬ x) = FX(x)− FX(−x).

THEOREM 3.1. Let −∞ ¬ x0 < 0 ¬ x0 ¬ ∞. Then we have the following
implications:

(1) Let FX(a1,nx) ∈ DL(G1,β(x)) and FX(c1,nx) ∈ DU (G
′
1,β′(x)). Then

F|X|(c1,nx) ∈ DU (G
′
1,β′(x)) if 0 ¬ lim

n→∞

FX(−c1,nx)√
k∗/n

<∞,

F|X|(a1,nx) ∈ DU (G
′
1,β(x)) if 0 ¬ lim

n→∞

FX(a1,nx)√
k∗/n

<∞.

(2) Let FX(a2,nx+b2,n) ∈ DL(G2,β(x)) and FX(c2,nx+d2,n) ∈ DU (G
′
2,β′(x)).

Then

(i) F|X|(c2,nx+ d2,n) ∈ DU (G
′
2,β′(x))

if |x0| > |x0| and 0 ¬ lim
n→∞

FX(−c2,nx−x0)√
k∗/n

<∞;

(ii) F|X|(a2,nx− b2,n) ∈ DU (G
′
2,β(x))

if |x0| > |x0| and 0 ¬ lim
n→∞

FX(a2,nx−x0)√
k∗/n

<∞.

(3) Let FX(a3,nx + b3,n) ∈ DL(G3(x)) and FX(c3,nx + d3,n) ∈ DU (G
′
3(x)).

Then

(i) F|X|(c3,nx+ d3,n) ∈ DU (G
′
3(x)) if 0 ¬ lim

n→∞
FX(−(c3,nx+d3,n))√

k∗/n
<∞;

(ii) F|X|(a3,nx− b3,n) ∈ DU (G
′
3(x)) if 0 ¬ lim

n→∞
FX(a3,nx−b3,n)√

k∗/n
<∞.

(4) (i) Let FX(a2,nx + b2,n) ∈ DL(G2,β(x)) and FX(c1,nx) ∈ DU (G
′
1,β′(x)).

Then

F|X|(c1,nx)∈DU (G
′
1,β′(x)) if 0¬ lim

n→∞

FX(−c1,nx)√
k∗/n

<∞,

F|X|(a2,nx− b2,n)∈DU (G
′
2,β(x)) if 0¬ lim

n→∞

FX(a2,nx− x0)√
k∗/n

<∞.
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(ii) Let FX(a1,nx)∈DL(G1,β(x)) and FX(c2,nx + d2,n)∈DU (G
′
2,β′(x)).

Then

F|X|(c2,nx+d2,n)∈DU (G
′
2,β′(x)) if 0¬ lim

n→∞

FX(−c2,nx−x0)√
k∗/n

<∞,

F|X|(a1,nx)∈DU (G
′
1,β(x)) if 0¬ lim

n→∞

FX(a1,nx)√
k∗/n

<∞.

(5) (i) Let FX(a1,nx) ∈ DL(G1,β(x)) and FX(c3,nx + d3,n) ∈ DU (G
′
3(x)).

Then

F|X|(c3,nx+ d3,n) ∈ DU (G
′
3(x))

if 0 ¬ lim
n→∞

FX(−(c3,nx+ d3,n))√
k∗/n

<∞,

F|X|(a1,nx) ∈ DU (G
′
1,β(x)) if 0 ¬ lim

n→∞

FX(a1,nx)√
k∗/n

<∞.

(ii) Let FX(a3,nx + b3,n) ∈ DL(G3(x)) and FX(c1,nx) ∈ DU (G
′
1,β′(x)).

Then

F|X|(c1,nx)∈DU (G
′
1,β′(x)) if 0¬ lim

n→∞

FX(−c1,nx)√
k∗/n

<∞,

F|X|(a3,nx−b3,n)∈DU (G
′
3(x)) if 0¬ lim

n→∞

FX(a3,nx−b3,n)√
k∗/n

<∞.

(6) (i) Let FX(a2,nx + b2,n) ∈ DL(G2,β(x)) and FX(c3,nx + d3,n) ∈
DU (G

′
3(x)). Then

F|X|(c3,nx+ d3,n) ∈ DU (G
′
3(x))

if 0 ¬ lim
n→∞

FX(−(c3,nx+ d3,n))√
k∗/n

<∞,

F|X|(a2,nx− b2,n) ∈ DU (G
′
2,β(x))

if |x0| > |x0| and 0 ¬ lim
n→∞

FX(a2,nx− x0)√
k∗/n

<∞.

(ii) Let FX(a3,nx + b3,n) ∈ DL(G3(x)) and FX(c2,nx + d2,n) ∈
DU (G

′
2,β′(x)). Then

F|X|(c2,nx+d2,n)∈DU (G
′
2,β′(x))

if |x0|> |x0| and 0¬ lim
n→∞

FX(−c2,nx−x0)√
k∗/n

<∞,
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F|X|(a3,nx−b3,n)∈DU (G
′
3(x)) if 0¬ lim

n→∞

FX(a3,nx−b3,n)√
k∗/n

<∞.

Proof. We prove only the first three statements since the proofs of the other
statements are similar.

In view of Lemma 3.1 we get F |X|(x) = FX(x) + FX(−x). Therefore, for
i = 1, 2, 3,

(3.1)
F |X|(ci,nx+di,n)−k∗√

k∗/n
=

FX(ci,nx+di,n)+FX(−ci,nx−di,n)−k∗√
k∗/n

.

Put i = 1 in (3.1). In view of (2.5) and Lemma 2.2, we get

F |X|(c1,nx)− k∗√
k∗/n

=
FX(c1,nx)− k∗√

k∗/n
+

FX(−c1,nx)√
k∗/n

−→n U1,β′(x) +

 lim
n→∞

FX(−c1,nx)√
k∗/n

if x > 0,

∞ if x ¬ 0,

where the possible limit points of the sequence FX(−c1,nx)√
k∗/n

are in {0, A,∞}, where

A is a positive finite constant. However, the only limit points which give a non-

degenerate limit for
F |X|(c1,nx)−k∗√

k∗/n
are {0, A}, while in the case of FX(−c1,nx)√

k∗/n
−→n 0,

we get
F |X|(c1,nx)− k∗√

k∗/n
−→n

{
−β′ log x, x > 0,

∞, x ¬ 0.

On the other hand, if FX(−c1,nx)√
k∗/n

−→n A, we get

F |X|(c1,nx)− k∗√
k∗/n

−→n

{
−β′ log x+A, x > 0,

∞, x ¬ 0.

Hence,

F|X|(c1,nx) ∈


DU (G

′
1,β′(x)) if lim

n→∞

FX(−c1,nx)√
k∗/n

= 0,

DU

(
G′1,β′

(
e
− 1

β′Ax
))

if lim
n→∞

FX(−c1,nx)√
k∗/n

= A.

On the other hand, due to (3.1) and Lemma 2.1 with normalizing constants a1,n
and b1,n, we get
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F |X|(a1,nx)− k∗√
k∗

n

=
FX(a1,n(−x))− k∗√

k∗/n
+

FX(a1,nx)√
k∗/n

−→n V1,β(−x) +

 lim
n→∞

FX(a1,nx)√
k∗/n

, x > 0,

∞, x < 0,

where the possible limit points of FX(a1,nx)√
k∗/n

are in {0, A′,∞}, where A′ is a pos-

itive finite constant. However, the only limit points which give a non-degenerate

limit for
F |X|(a1,nx)−k∗√

k∗/n
are {0, A′}. If FX(a1,nx)√

k∗/n
−→n 0, then due to (2.4) we get

F |X|(a1,nx)− k∗√
k∗/n

−→n

{
−β log x, x > 0,

∞, x ¬ 0.

If FX(a1,nx)√
k∗/n

−→n A′, then due to (2.4), we get

F |X|(a1,nx)− k∗√
k∗/n

−→n

{
−β log x+A′, x > 0,

∞, x ¬ 0.

Hence,

F|X|(a1,nx) ∈


DU (G

′
1,β(x)) if lim

n→∞

FX(a1,nx)√
k∗/n

= 0,

DU

(
G′1,β

(
e
− 1

β
A′

x
))

if lim
n→∞

FX(a1,nx)√
k∗/n

= A′.

This completes the proof of part (1) of Theorem 3.1.
Turning to part (2)(i), from Lemma 2.2 we have d2,n = x0 < ∞. Let

|x0| > |x0| and put i = 2 in (3.1). We get

F |X(c2,nx+ d2,n)− k∗√
k∗/n

=
FX(c2,nx+ d2,n)− k∗√

k∗/n
+

FX(−c2,nx− x0)√
k∗/n

.

In view of (2.5) and Lemma 2.2, we get

F |X|(c2,nx+ d2,n)− k∗√
k∗/n

−→n U2,β′(x) + lim
n→∞

FX(−c2,nx− x0)√
k∗/n

,

where the possible limit points of FX(−c2,nx−x0)√
k∗/n

are in {0, B,∞}, where B is a

finite constant. However, the only limit points which give a non-degenerate limit
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for
F |X|(c2,nx+d2,n)−k∗√

k∗/n
are in {0, B}. If FX(−c2,nx−x0)√

k∗/n
−→n 0, then in view of (2.5),

we get
F |X|(c2,nx+ d2,n)− k∗√

k∗/n
−→n

{
β′ log |x|, x < 0,

−∞, x ­ 0.

If FX(−c2,nx−x0)√
k∗/n

−→n B, then in view of (2.5), we get

F |X|(c2,nx+ d2,n)− k∗√
k∗/n

−→n

{
β′ log |x|+B, x < 0,

−∞, x ­ 0.

Hence,

F|X|(c2,nx+ d2,n) ∈


DU (G

′
2,β′(x)) if lim

n→∞

FX(−c2,nx− x0)√
k∗/n

= 0,

DU

(
G′2,β′

(
e

1
β′Bx

))
if lim

n→∞

FX(−c2,nx− x0)√
k∗/n

= B.

Thus, part (2)(i) of Theorem 3.1 is proved.
Now we prove part (2)(ii). Let |x0| > |x0|. Consider (3.1) with normalizing

constants a2,n and −b2,n. Using Lemma 2.1, we get

F |X|(a2,nx− b2,n)− k∗√
k∗/n

=
FX(a2,n(−x) + b2,n)− k∗√

k∗/n
+

FX(a2,nx− x0)√
k∗/n

.

Due to (2.4) and Lemma 2.1, we have

F |X|(a2,nx− b2,n)− k∗√
k∗/n

−→n V2,β(−x) + lim
n→∞

FX(a2,nx− x0)√
k∗/n

,

where the possible limit points of FX(a2,nx−x0)√
k∗/n

are in {0, B′,∞}, where B′ is a

finite constant. However, the only limit points which give a non-degenerate limit

for
F |X|(a2,nx−b2,n)−k∗√

k∗/n
are in {0, B′}. If FX(a2,nx−x0)√

k∗/n
−→n 0, then in view of (2.4),

we have
F |X|(a2,nx− b2,n)− k∗√

k∗/n
−→n

{
β log |x|, x < 0,

−∞, x ­ 0.

If FX(a2,nx−x0)√
k∗/n

−→n B′, then in view of (2.4), we have

F |X|(a2,nx− b2,n)− k∗√
k∗/n

−→n

{
β log |x|+B′, x < 0,

−∞, x ­ 0.
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Hence,

F|X|(a2,nx− b2,n) ∈


DU (G

′
2,β(x)) if lim

n→∞

FX(a2,nx− x0)√
k∗/n

= 0,

DU

(
G′2,β

(
e

1
β
B′
x
))

if lim
n→∞

FX(a2,nx− x0)√
k∗/n

= B′.

This completes the proof of part (2)(ii) of Theorem 3.1.
Now, we prove part (3)(i). Putting i = 3 in (3.1), we have

F |X|(c3,nx+ d3,n)− k∗√
k∗/n

=
FX(c3,nx+ d3,n)− k∗√

k∗/n
+

FX(−c3,nx− d3,n)√
k∗/n

.

If FX(−c3,nx− d3,n) −→n 0 then due to (2.5), we get

F |X|(c3,nx+ d3,n)− k∗√
k∗/n

−→n U3(x) + lim
n→∞

FX(−c3,nx− d3,n)√
k∗/n

,

where the the possible limit points of FX(−c3,nx−d3,n)√
k∗/n

are in {C,∞}, where C ­ 0

is a finite constant. The only limit point that gives a non-degenerate limit for
F |X|(c3,nx+d3,n)−k∗√

k∗/n
is C. Then

F |X|(c3,nx+ d3,n)− k∗√
k∗/n

−→n −(x− C).

Hence, F|X|(c3,nx + d3,n) ∈ DU (G
′
3(x − C)). This proves part (3)(i) of Theo-

rem 3.1.
Now, we turn to part (3)(ii). Considering (3.1) with normalizing constants a3,n

and −b3,n, we have

F |X|(a3,nx− b3,n)− k∗√
k∗/n

=
FX(a3,n(−x) + b3,n)− k∗√

k∗/n
+

FX(a3,nx− b3,n)√
k∗/n

.

Assuming that FX(a3,nx− b3,n) −→n 0, due to (2.4) we have

F |X|(a3,nx− b3,n)− k∗√
k∗/n

−→n V3(−x) + lim
n→∞

FX(a3,nx− b3,n)√
k∗/n

.

The possible limit points of FX(a3,nx−b3,n)√
k∗/n

are in {C ′,∞}, where C ′ ­ 0

is a finite constant. The only limit point that gives a non-degenerate limit for
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F |X|(a3,nx−b3,n)−k∗√
k∗/n

is C ′. Then

F |X|(a3,nx− b3,n)− k∗√
k∗/n

−→n −(x− C ′).

Hence, F|X|(a3,nx − b3,n) ∈ DU (G
′
3(x − C ′)). This completes the proof of

part (3)(ii) of Theorem 3.1. ■

REMARK 3.1. It can be shown that the sufficient conditions in parts (1)–(3)
are also necessary by noting that the proof steps in those parts can be reversed.
Moreover, the conditions given in all the parts of the theorem guarantee that the
folded distribution belongs to the upper intermediate domain of attraction of the
same upper, or lower, intermediate limit type to which the distribution itself be-
longs with the same normalizing constants, ci,n and di,n, i = 1, 2, 3, or ai,n and
bi,n, i = 1, 2, 3. However, if these conditions are not met, the folded distribution
might be of the same upper limit type but with different normalizing constants αi,n

and βi,n, i = 1, 2, 3. In this case, the new normalizing constants would not meet
the Khinchin criteria for the first group of the normalizing constants, e.g., at least
one of the conditions

0 < lim
n→∞

αi,n

ci,n
<∞ and −∞ < lim

n→∞

βi,n − di,n
ci,n

<∞,

or 0 < lim
n→∞

αi,n

ai,n
<∞ and −∞ < lim

n→∞
βi,n−bi,n

ai,n
<∞, is not met. The following

example endorses this fact.

EXAMPLE 3.1. Let X be the uniform DF FX(x) = x+1
2 , −1 ¬ x ¬ 1. The

corresponding folded uniform DF is F|X|(x) = x, 0 ¬ x ¬ 1. It is easy to show
that FX(a3,nx+ b3,n) ∈ DL(G3(x)) and FX(c3,nx+ d3,n) ∈ DU (G

′
3(x)), where

a3,n = c3,n = 2
√
k

n and b3,n = −d3,n = 2k
n − 1. Then it is easy to check that

FX(a3,nx− b3,n)√
k/n

=
1− a3,nx−b3,n+1

2√
k/n

= −x+
√
k −→n ∞

and
FX(−c3,nx− d3,n)√

k/n
=

−c3,nx−d3,n+1
2√
k/n

= −x+
√
k −→n ∞.

Hence, in view of Theorem 3.1(3), F|X|(a3,nx − b3,n) /∈ DU (G
′
3(x)) and

F|X|(c3,nx + d3,n) /∈ DU (G
′
3(x)). On the other hand, we can easily show that

F|X|(α3,nx + β3,n) ∈ DU (G
′
3(x)), where α3,n =

√
k
n , β3,n = 1 − k

n , α3,n

a3,n
=

α3,n

c3,n
= 1

2 , lim
n→∞

β3,n−b3,n
a3,n

= −∞, and lim
n→∞

β3,n−d3,n
c3,n

=∞.
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4. ASYMPTOTIC BEHAVIOR OF RECORD VALUES FROM FOLDED DISTRIBUTIONS

In this section, the asymptotic behavior of univariate record values of a folded
distribution is studied. In addition, some illustrative examples are provided.

THEOREM 4.1. Let −∞ ¬ x0 < 0 ¬ x0 ¬ ∞, where x0 and x0 are the left
and right endpoints, respectively. Then we have the following implications:

(1) Let FX(A1,nx+B1,n) ∈ Durec(Ψ1,β(x)). Then

F|X|(A1,nx+B1,n) ∈ Durec(Ψ1,β(x)) if 0 ¬ lim
n→∞

FX(−A1,nx)

1− FX(A1,nx)
<∞.

(2) Let FX(A2,nx+B2,n) ∈ Durec(Ψ2,β(x)) and suppose |x0| > |x0|. Then

F|X|(A2,nx+B2,n)∈Durec(Ψ2,β(x)) if 0¬ lim
n→∞

FX(−A2,nx−x0)
1−FX(A2,nx+x0)

<∞.

(3) Let FX(A3,nx + B3,n) ∈ Durec(Ψ3(x)). Then F|X|(A3,nx + B3,n) ∈
Durec(Ψ3(x)) if

lim
n→∞

FX(−A3,nx−B3,n) = 0 and 0 ¬ lim
n→∞

FX(−A3,nx−B3,n)

1− FX(A3,nx+B3,n)
<∞.

Proof. In view of Lemma 3.1, we get

(4.1)
U|X|(Ai,nx+Bi,n)− n

√
n

=
− log(1− F|X|(Ai,nx+Bi,n))− n

√
n

=
− log(1−FX(Ai,nx+Bi,n)+FX(−Ai,nx−Bi,n))−n√

n

=
− log(1− FX(Ai,nx+Bi,n))− n√

n

+
− log

(
1 +

FX(−Ai,nx−Bi,n)
1−FX(Ai,nx+Bi,n)

)
√
n

, i = 1, 2, 3.

Put i = 1 in (4.1). In view of (2.8) and Lemma 2.4, we get

U|X|(A1,nx+B1,n)− n
√
n

=
− log(1− FX(A1,nx))− n√

n
+
− log

(
1 +

FX(−A1,nx)
1−FX(A1,nx)

)
√
n

−→n

{
β log x if x > 0

−∞ if x ¬ 0
+

 lim
n→∞

− log
(
1 +

FX(−A1,nx)
1−FX(A1,nx)

)
√
n

if x > 0,

0 if x ¬ ∞,
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where the possible limit points of FX(−A1,nx)
1−FX(A1,nx)

are in {M,∞}, where M ­ 0

is a finite constant. The only limit point that gives a non-degenerate limit for
U|X|(A1,nx+B1,n)−n√

n
is M. Then

U|X|(A1,nx+B1,n)− n
√
n

−→n

{
β log x if x > 0,

−∞ if x ¬ 0.

Hence, F|X|(A1,nx+B1,n) ∈ Durec(Ψ1,β(x)). This completes the proof of part (1).
Now we prove (2). From Lemma 2.4, we have B2,n = x0. Suppose |x0| > |x0|.

On putting i = 2 in (4.1), due to (2.8) we get

U|X|(A2,nx+B2,n)− n
√
n

=
− log(1− FX(A2,nx+B2,n))− n√

n
+
− log

(
1 +

FX(−A2,nx−x0)
1−FX(A2,nx+x0)

)
√
n

−→n

{
−β log |x| if x < 0

∞ if x ­ 0
+ lim

n→∞

− log
(
1 +

FX(−A2,nx−x0)
1−FX(A2,nx+x0)

)
√
n

,

where the sequence FX(−A2,nx−x0)
1−FX(A2,nx+x0)

has limit points in {N,∞}, where N ­ 0

is a finite constant. The only limit point that provides a non-degenerate limit for
U|X|(A2,nx+B2,n)−n√

n
is N . Then

U|X|(A2,nx+B2,n)− n
√
n

−→n

{
−β log |x| if x < 0,

∞ if x ­ 0.

Hence, F|X|(A2,nx+B2,n) ∈ Durec(Ψ2,β(x)). This completes the proof of part (2).
Turning to (3), consider i = 3 with (4.1) due to (2.8). Assuming that

FX(−A3,nx−B3,n) −→n 0, we get

U|X|(A3,nx+B3,n)− n
√
n

=
− log(1− FX(A3,nx+B3,n))− n√

n

+
− log

(
1 +

FX(−A3,nx−B3,n)
1−FX(A3,nx+B3,n)

)
√
n

−→n x + lim
n→∞

− log
(
1 +

FX(−A3,nx−B3,n)
1−FX(A3,nx+B3,n)

)
√
n

,

where the sequence FX(−A3,nx−B3,n)
1−FX(A3,nx+B3,n)

has limit points in {L,∞}, where L ­ 0

is a finite constant. The only limit point that provides a non-degenerate limit for
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U|X|(A3,nx+B3,n)−n√
n

is L. Then

U|X|(A3,nx+B3,n)− n
√
n

−→n x.

Hence, F|X|(A3,nx + B3,n) ∈ Durec(Ψ3(x)). This completes the proof of Theo-
rem 4.1. ■

4.1. Illustrative examples

EXAMPLE 4.1 (Logistic distribution). The logistic DF is defined as FX(x) =
1

1+e−x , −∞ ¬ x ¬ ∞. It is known (see [2]) that FX(A3,nx+B3,n) ∈ Durec(Ψ3)

with normalizing constants A3,n = log
(
en+

√
n−1

en−1
)

and B3,n = log(en − 1). It is
easy to check that FX(−A3,nx−B3,n) −→n 0 and

FX(−A3,nx−B3,n)

1− FX(A3,nx+B3,n)
−→n

{
0, or
L > 0.

Therefore,

FX(−A3,nx−B3,n) =
1

1 + e−(− log( e
n+
√
n−1

en−1
)x−log(en−1))

=
1

1 + elog(
en+

√
n−1

en−1
x(en−1))

=
1

1 + (en+
√
n − 1)x

−→n 0.

Also, FX(A3,nx+B3,n) =
1

1+ 1

en+
√
n−1

. Hence

FX(−A3,nx−B3,n)

1− FX(A3,nx+B3,n)
=

1
1+(en+

√
n−1)x

1− 1
1+ 1

(en+
√
n−1)x

=

1
1+(en+

√
n−1)x

1− 1
(en+

√
n−1)x+1

(en+
√
n−1)x

= 1.

In view of Theorem 4.1(3), we have FX(−A3,nx−B3,n)
1−FX(A3,nx+B3,n)

−→n 1. Hence
F|X|(A3,nx+B3,n) ∈ Durec(Ψ3(x)).

EXAMPLE 4.2 (Standard normal distribution). The standard normal distribu-
tion is defined as FX(x) =

∫ x

−∞
1√
2π
e−t

2/2 dt, −∞ < x < ∞. It is known
(see [2]) that FX(A3,nx + B3,n) ∈ Durec(Ψ3) with normalizing constants A3,n ∼√
2n+ 2

√
n−
√
2n =

√
2n(

√
1 + 1/

√
n− 1) and B3,n ∼

√
2n. Therefore, it is

easy to verify that FX(−A3,nx−B3,n) −→n 0 and

FX(−A3,nx−B3,n)

FX(A3,nx+B3,n)
−→n

{
0, or
L > 0.



Order statistics and record values for folded distributions 17

Thus,

FX(−A3,nx−B3,n) ∼
1√
2π

−
√
2n(
√

1+1/
√
n−1)x−

√
2n∫

−∞
e−t

2/2 dt

−→n
1√
2π

−∞∫
−∞

e−t
2/2 dt = 0.

Also, FX(A3,nx+B3,n) ∼ 1√
2π

∫∞√
2n(
√

1+1/
√
n−1)x+

√
2n

e−t
2/2 dt. Thus

lim
n→∞

FX(−A3,nx−B3,n)

FX(A3,nx+B3,n)
∼

1√
2π

−
√
2n(
√

1+1/
√
n−1)x−

√
2n∫

−∞
e−t

2/2 dt

1√
2π

∞∫
√
2n(
√

1+1/
√
n−1)x+

√
2n

e−t2/2 dt

= 1.

In view of Theorem 4.1(3), we have FX(−A3,nx−B3,n)

FX(A3,nx+B3,n)
−→n 1. It follows that

F|X|(A3,nx+B3,n) ∈ Durec(Ψ3(x)).

EXAMPLE 4.3 (Weibull distribution). The Weibull distribution is defined as
FX(x) = 1−e−xc

, 0 < x <∞, c > 0. It is known (see [2]) that FX(A3,nx+B3,n)
∈ Durec(Ψ3) with normalizing constants

A3,n = n1/c((1 + 1/
√
n)1/c − 1) and B3,n = n1/c.

Then it is easy to check that FX(−A3,nx−B3,n) −→n 0 and

FX(−A3,nx−B3,n)

FX(A3,nx+B3,n)
−→n

{
0, or
L > 0.

Therefore,

FX(−A3,nx−B3,n) = 1− e−(−n
1/c((1+1/

√
n)1/c−1)x−n1/c)c

= 1− e−n(−((1+1/
√
n)1/c−1)x−1)c −→n

{−∞ if c is even,
1 if c is odd.

Hence, F|X|(A3,nx+B3,n) /∈ Durec(Ψ3).

5. CONCLUSION

This study examined the asymptotic behavior of random record values and interme-
diate OSs arising from a folded distribution by comparing the asymptotic behavior
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of those statistics arising from the unfolded distribution itself. It was observed that
the limit behavior of such statistics is significantly influenced by the distribution’s
right and left endpoints. Furthermore, it was demonstrated that the upper record
value’s weak convergence based on a folded DF is identical to that based on the
original DF (the unfolded distribution). Lastly, a few examples were provided for
illustration.
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