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Abstract. We consider the sets of negatively associated (NA) and negatively
correlated (NC) distributions as subsets of the spaceM of all probability
distributions on Rn, in terms of their relative topological structures within
the topological space of all measures on a given measurable space. We prove
that the class of NA distributions has a non-empty interior with respect to
the topology of the total variation metric on M. We show, however, that
this is not the case in the weak topology (i.e. the topology of convergence in
distribution), unless the underlying probability space is finite. We consider
both the convexity and the connectedness of these classes of probability
measures, and also consider the two classes on their (widely studied) re-
strictions to the Boolean cube in Rn.
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1. INTRODUCTION

In recent years negatively associated probability distributions have been studied as
potential generalizations of independent random variables [15, 7, 5, 28, 1]. How-
ever, the characterization of such probability measures on Rn has been elusive. In
many cases just the specialization of such a characterization to Boolean cube mea-
sures, i.e. probability measures whose marginals are simple variations of Bernoulli
measures, has generated a great deal of interest [24, 4]. The characterization of the
set of negatively associated measures on Rn can involve even simpler questions re-
garding the topological structure of this set within the space of all measures. This
question may have different answers under different topologies on the space of
measures, which include the total variation topology and the standard weak (distri-
butional) topology. Simple versions of this question include whether the space of
such distributions is connected, convex, closed, and whether it has an interior with
respect to a given topology.

∗ Research partially supported by NSF Award number DMS1736392.
© Probability and Mathematical Statistics, 2024
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Denote byM(Rn) the set of all Borel probability measures on Rn. A probabil-
ity measure µ ∈M(Rn) is said to be negatively correlated (NC) if

(1.1)
∫
Rn

xixj dµ(x) ¬
∫
Rn

xi dµ(x)
∫
Rn

xj dµ(x), ∀1 ¬ i ̸= j ¬ n,

assuming the integrals exist. We say that µ is strictly NC if strict inequality holds
in (1.1). We denote the class of NC distributions byMNC orMNC(Rn). In this
context, it is also common and equivalent to say that the variables themselves,
X1, . . . , Xn, are negatively correlated.

The functions fi(x) = xi, i = 1, . . . , n, are non-decreasing on Rn. In general,
we say that a function f : Rn → R is non-decreasing if f(x) ­ f(y) whenever
x ­ y in the product ordering (x ­ y if and only if xi ­ yi for each i = 1, . . . , n).
We say that f : Rn → R is non-increasing if f(x) ¬ f(y) whenever x ­ y (again
in the product ordering). We denote subsets of the index set {1, . . . , n} by I , J , and
define xI ∈ R|I| to be the restriction of x ∈ Rn to the index set I; here |I| denotes
the cardinality of I . Moreover, we denote by µ(I) the marginal distributions of µ:
for A ⊂ R|I|,

(1.2) µ(I)(A) :=
∫
A

∫
R−I

dµ(x),

where R−I denotes all x = (xi)i/∈I . Then µ is said to be negatively associated
(NA) if for all disjoint I, J ⊂ {1, . . . , n} and all non-decreasing and integrable
f : R|I| → R and g : R|J | → R, we have

(1.3)
∫
Rn

f(xI)g(xJ) dµ(x) ¬
∫
Rn

f(xI) dµ(x)
∫
Rn

g(xJ) dµ(x),

assuming the integrals exist. Equivalently,

(1.4) Covµ(f(xI), g(xJ)) ¬ 0,

where Covµ : L1(Rn, µ)×L1(Rn, µ)→ R denotes the covariance operator. Note
that if f or g is constant, then we have trivial equality in (1.3). With that said,
we say that µ is strictly NA if strict inequality holds in (1.3) for all (µ-almost
surely) non-constant f(xI) and g(xJ) and disjoint I, J ⊂ {1, . . . , n}. If we spec-
ify f(x) = fi(x) = xi and g(x) = gj(x) = xj , i ̸= j, then we arrive at (1.1). Thus
negative association is stronger than negative correlation. We denote the class of
NA distributions byMNA orMNA(Rn). As in the case of negative correlation, it
is common and equivalent to consider negatively associated variables. That is, if
the variables X1, . . . , Xn are distributed according to a negatively associated dis-
tribution, then one may say that the variables themselves are negatively associated.

If µ is the standard Cauchy distribution, then the second moment is not defined,
nor is the first moment, whence the first integral on the left-hand side of (1.3) is
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not always defined, nor is it defined in (1.1). We therefore assert that indeed, the
definition of negative association and negative correlation requires the assumption
that the product fg is L1, that is, the integral of the product fg exists and is finite.

To clarify this, we put forth the assertion that the variables X and −X are
always negatively associated. We supply the proof.

Fix variables X and −X , and let Y be a distinct variable. It is to be noted that
whenever X ­ Y , we have −X ¬ −Y . With that in mind, suppose f and g are
increasing functions in one variable, and consider

(f(X)− f(Y ))(g(−X)− g(−Y )).

Whenever X > Y we have −X < −Y , whence we obtain the inequality

(f(X)− f(Y ))(g(−X)− g(−Y )) ¬ 0.

Expanding the left hand side gives us

f(X)g(−X)− f(X)g(−Y )− f(Y )g(−X) + f(Y )g(−Y ) ¬ 0.

Integrating in X and Y yields

2
∫
f(X)g(−X) dµ(X) ¬ 2

∫
f(X) dµ(X)

∫
f(−X) dµ(X).

It follows that X,−X are negatively associated assuming the above integrals are
finite and exist.

It is stated in [15] that pairs of random variables X and Y satisfy the condition
of negative association (NA) if and only if they satisfy the condition of negative
quadrant dependence (NQD). The latter condition reads, for all real x, y,

P (X ¬ x, Y ¬ y) ¬ P (X ¬ x)P (Y ¬ y).

An infinite family of NA random variables is defined by demanding that every
finite subfamily is negatively associated. Fix a family (Xn)n∈N of pairwise neg-
atively quadrant dependent random variables with the same distribution. It was
proven by Matuła [20] that Sn/n → a almost surely if Sn =

∑n
i=1Xi and

a = EX1. He further proves that if (Xn)n∈N is a sequence of negatively asso-
ciated random variables with finite second moment and

∑∞
n=1Var(Xn)/n

2 <∞,
then (Sn −ESn)/n→ 0 almost surely as n→∞.

Examples of infinite sequences of NA random variables include infinite se-
quences of independent random variables. It was shown in [15] that a permu-
tation distribution defined on a fixed vector x = (x1, . . . , xk) of k real num-
bers is NA. The permutation distribution is the joint distribution of the vector
X = (X1, . . . , Xk) which takes as values the k! permutations of x with equal
probability 1/k!. We can extend a permutation distribution to sequences of infinite
length as follows.
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Property P7 in [15] asserts that the union of independent sets of NA random
variables is NA. Conduct an experiment where a vector (x1, . . . , xn) of real num-
bers is fixed, and a permutation distribution is given on this set of n real numbers.
Repeat the permutation independently without bound, yielding an infinite family
of NA random variables.

Besides negative association, other attempts to quantify and conceptualize de-
pendences among random variables appear in, for example, [2, 3, 10, 16, 17].
A concept closely related to NA, known as positive association (PA), sheds some
light on the class of NA distributions. The notion of positive association was in-
troduced into the statistical literature prior to negative association, in [11]. We say
that µ is positively associated if Covµ(f, g) ­ 0 for all pairs of non-decreasing,
real-valued functions f and g. We note that we no longer assume that f and g are
defined on disjoint subsets of variables, as we did with negative association. Re-
markably (or not), significantly greater progress has been made in the theory of
positive association than in the theory of negative association. This, in part, is due
to an elegant result known as the FKG inequality [13], which gives a sufficient cri-
terion for PA. At its most basic level, the FKG inequality is known as Chebyshev’s
inequality [9] (distinct from the standard Chebyshev inequality in elementary prob-
ability). This theorem states that if X is a random variable on R (as opposed to Rn),
and f, g : R→ R are both non-decreasing, then

(1.5) E(f(X)g(X)) ­ Ef(X)Eg(X).

This holds for any probability distribution on the real line, so long as f and g
are non-decreasing (or non-increasing). The proof of (1.5) is straightforward, and
follows from the basic pointwise inequality

(1.6) (f(x)− f(y))(g(x)− g(y)) ­ 0,

which holds for all non-decreasing (or non-increasing) f, g : R → R. Indeed,
assuming x and y are independent and identically distributed, upon expanding (1.6)
and double integrating (over x and y) we obtain Chebyshev’s inequality (1.5).

The FKG inequality is essentially a generalization of (1.5) to the product set-
ting, Rn equipped with the product ordering. To state the result, we first define the
functions ∧ (meet, or greatest lower bound) and ∨ (join, or least upper bound) by

x ∧ y := max {z ∈ Rn : z ¬ x, z ¬ y},
x ∨ y := min {z ∈ Rn : z ­ x, z ­ y}.

Then the FKG theorem states that if a discrete probability measure µ on Rn satisfies

(1.7) µ(x ∨ y)µ(x ∧ y) ­ µ(x)µ(y)

then µ is positively associated.
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Unfortunately, a criterion as simple as (1.7) does not (yet) exists for negative
association. As pointed out by Pemantle [24], the notion of negative association is
not nearly as “robust” as positive association. Since Chebyshev’s inequality (1.5)
implies that any random variable is positively associated with itself, we cannot
incorporate every non-decreasing function in the definition of negative association;
but rather non-decreasing functions defined on disjoint coordinate subsets. And
again, as noted by Pemantle [24], there is a bound on how far Exixj can lie below
ExiExj , due to the inequality Var(

∑
xi) =

∑
Cov(xi, xj) ­ 0.

The study of the class of negatively associated random variables dates back
to [15], where basic properties of NA random variables are derived, and examples
of NA random variables are given: multinomial, convolution of unlike multinomi-
als, multivariate hypergeometric, Dirichlet, and Dirichlet compound multinomial
variables. Though the notion of negative association has existed for some time,
the literature on these distributions is still quite sparse [15, 7, 24, 4]. But interest
in them is growing, due in part to the ease with which sums of NA (even NC)
random variables satisfy sub-Gaussian tail bounds. Specifically, if µ is negatively
correlated on Rn, then

µ
(
x ∈ Rn :

∣∣∣ n∑
i=1

xi −Eµ

n∑
i=1

xi

∣∣∣ ­ λ
)
¬ Ce−cλ

2

for some absolute constants c, C > 0. It is conjectured that the same may be true
for the replacement of sums

∑
i xi by more general Lipschitz functions of such

variables; the only work on this question seems to come from [25, 8, 14]. (The no-
tion that Lipschitz functions on a probability space concentrate about their mean,
in the sense that their tails are (in the best case) sub-Gaussian, is called the con-
centration of measure phenomenon [18].) The work in [25] seems to be inspired
by the recent article [4], in which the authors develop a novel notion of negative
dependence known as the strong Rayleigh property. Their approach is via the ge-
ometry of associated generating polynomials, and they prove several conjectures
put forth in this area of research.

We emphasize here, however, that nowhere in the literature has the structure
of the space of negatively associated or negatively correlated distributions been
studied. It is therefore natural to ask about the topological or geometric properties
of the space of NA, or even NC, distributions. This question is the major impetus
behind our work.

We consider these two classes of measures (NA and NC) broadly, from a topo-
logical perspective. We view them as subsets of the general space of measures
M(Rn) = C0(Rn)∗ (the dual of the space of continuous real-valued functions
which vanish at infinity) endowed with the weak topology (technically this should
be denoted as the weak-∗ topology). This is the weakest topology ensuring the con-
tinuity of the maps f 7→

∫
Rn f dµ for f ∈ C0(Rn), and coincides with the standard

topology of convergence in distribution for measures. Thus we say that a sequence
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of distributions µn converges weakly to a distribution µ if∫
Rn

f dµn →
∫
Rn

f dµ

for all f ∈ C0(Rn). When X ⊂ Rn is compact in the standard topology, we
may define the weak topology onM(X) as follows. A basic open set in the weak
topology is given by [23, 27]

(1.8) Vµ(f1, . . . , fk; ϵ1, . . . , ϵk)

:=
{
ν ∈M(X) :

∣∣∣∫ fi dν −
∫
fi dµ

∣∣∣ < ϵi, i = 1, . . . , k
}
,

where f1, . . . , fk are continuous real-valued functions on X . The family of sets
obtained by varying µ, k, f1, . . . , fk, ϵ1, . . . , ϵk form a basis for the weak topol-
ogy, i.e. a collection of sets whose unions form all open sets. Thus a sequence of
distributions µn converges weakly to a distribution µ if and only if∫

X

f dµn →
∫
X

f dµ

for every f ∈ C(X) (now bounded due to compactness).
We may in addition view the NC and NA families as subsets of the space

M(Rn) of all measures, but now endowed with the total variation topology. This
topology is induced from the total variation distance

∥µ− ν∥TV := sup
|f |¬1

∣∣∣∫
Rn

f dµ−
∫
Rn

f dν
∣∣∣.

In particular, in the setting of a discrete probability space (i.e. with support on a
countable number of points), the total variation distance may be expressed as

(1.9) ∥µ− ν∥TV =
∑

x∈Rn

|µ{x} − ν{x}|.

Unless µ has finite support, the total variation distance induces a stronger topology
than the weak topology. This will be discussed later on in this paper.

An outline of the paper is as follows. We begin by showing that the general
class of NA distributions on a compact subspace of Rn has a non-empty interior
in the total variation topology, but not in the weak topology. We next specialize to
the subspace of measures concentrated on In = {0, 1}n, the Boolean cube, and
consider the interior and boundary of these distributions. This simple case affords
intuitive arguments and constructive proofs. But it is still of great interest, and
much is unknown about negative association on the Boolean cube [24, 25].

Next we address the question of the convexity of the spaces of negatively as-
sociated and negatively correlated distributions. We show that these spaces are not
convex for distributions on Rn, and they are similarly non-convex when restricted
to the Boolean cube. We then address whether or not these spaces are connected in
the weak or total variation topology.
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2. THE TOPOLOGY OF MNC AND MNA

2.1. The interior ofMNC(Rn) andMNA(Rn). The interiors of both the space of
negatively correlated and negatively associated distributions are intimately con-
nected to their strict counterparts. Recall that a distribution µ on Rn is strictly NC
if

Covµ(xi, xj) < 0

for all 1 ¬ i < j ¬ n, and a distribution µ on Rn is strictly NA if

Covµ(f(xI), g(xJ)) < 0

for all strictly non-decreasing (not almost surely constant) f, g and disjoint I, J ⊂
{1, . . . , n}. If a distribution µ is strictly NA then it must be strictly NC. It is not
a priori clear that strictly NA distributions even exist. However, we prove below
in Lemma 2.1 that they indeed exist on the Boolean cube {0, 1}n (and thus by
extension on Rn).

We note that here and elsewhere, the notion of a strictly non-decreasing func-
tion f means by implication that f is strictly non-decreasing, i.e. that it is not
essentially constant with respect to the measure µ under consideration. We define
the total variation of a non-decreasing function f with respect to a measure µ to be
sup f − inf f , where sup denotes essential sup (i.e. modulo sets of measure 0) and
inf denotes essential inf. Note however that on the cube these two notions (sup and
essential sup) coincide for non-decreasing and non-increasing functions, as do inf
and essential inf.

LEMMA 2.1. There exist strictly NA distributions µ on {0, 1}n such that for
all non-decreasing f(xI), g(xJ) (with I, J disjoint sets of indices) having total
variation 1 on {0, 1}n, there is an ϵ > 0 such that∫

fg dµ ¬
∫
f dµ

∫
g dµ− ϵ.

Consequently, there exist strictly NA distributions on the whole of Rn satisfying
the above inequality (under the same measure µ supported on {0, 1}n viewed as a
subset of Rn).

Proof. Let In,1 denote the collection of vectors (x1, . . . , xn) ∈ {0, 1}n such
that

∑
i xi = 1, and let µ be any probability distribution supported on In,1. Thus

for some ϵ > 0, we have µ(x) >
√
ϵ for all x ∈ In,1. Now assume that, as stated,

f(xI) and g(xJ) are non-decreasing functions of total variation 1, with I and J
disjoint subsets of 1, . . . , n. First note that to check the condition

Covµ(f(xI), g(xJ)) < 0,

it suffices to assume that f(0, . . . , 0) = 0 and g(0, . . . , 0) = 0. Indeed, we may
replace f(xI) with f(xI)−f(0, . . . , 0) and g(xJ) with g(xJ)−g(0, . . . , 0) without
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changing Covµ(f(xI), g(xJ)). It follows that

Eµ[f(xI)g(xJ)] = 0,

since for x in the support of µ, we have
∑

i xi = 1 and so necessarily xI =
(0, . . . , 0) or xJ = (0, . . . , 0). On the other hand, since f and g are strictly non-
decreasing (i.e. non-constant), zero at the zero vector, and of total variation 1, each
must equal 1 at one or more points in the support of our measure, i.e., in In,1. Thus
Eµ[f(xI)] >

√
ϵ and Eµ[g(xJ)] >

√
ϵ, and so

Eµ[f(xI)g(xJ)] = 0 < (
√
ϵ)2 = ϵ ¬ Eµ[f(xI)]Eµ[g(xJ)].

Therefore µ is strictly negatively associated satisfying the lower ϵ-bound in the
statement of the theorem. We note that since µ satisfies this bound as a measure on
the cube In, it also satisfies this bound when viewed as a measure on Rn (concen-
trated on In ⊂ Rn). ■

We now move to the main results of this section. We begin by considering
the weak interior (i.e. interior in the weak topology on measures) of the space of
negatively associated distributions on Rn or on any fixed open subset G ⊂ Rn.
The following proposition shows that the weak interior of the NA distributions
on G is in fact empty.

PROPOSITION 2.1. Consider the space of probability distributions supported
on a fixed open set G ⊂ Rn (or all of Rn). If µ is strictly NA on G, then every
weak neighborhood of µ contains a non-NA distribution ν.

Proof. Let µ be strictly NA and let ϵ and continuous bounded f1, . . . , fk be
given. Then ν ′ will be in the weak neighborhood Vµ(ϵ; f1, . . . , fk) if and only if∣∣∣∫ fi dµ−

∫
fi dν

′
∣∣∣ ¬ ϵ

for every i = 1, . . . , k. We construct a non-negatively associated distribution ν ′

in the weak neighborhood Vµ(ϵ; f1, . . . , fk). This is done by way of a discrete
distribution ν ′ satisfying

∫
fi dµ =

∫
fi dν

′ for each i = 1, . . . , k, but which itself
is not negatively associated.

Let ν be a positively associated distribution on G such that∫
fk+1fk+2 dν −

∫
fk+1 dν

∫
fk+2 dν > 0

for some non-decreasing fk+1, fk+2, and append the latter two functions to the
above sequence, yielding f1, . . . , fk+2. (See [13] for existence theorems and ex-
amples of positively associated measures.) Assume without loss of generality that
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f1, . . . , fk+1, fk+2, fk+1fk+2 are linearly independent. For each x consider the
vector

fx = (f1(x), . . . , fk(x), fk+1(x), fk+2(x), fk+1(x)fk+2(x)) ∈ Rk+3,

with the last entry the product of fk+1 and fk+2. The collection {fx}x∈G
spans Rk+3. Thus we can find α1, . . . , αk+3 and x1, . . . , xk+3 such that

(µ(f1), . . . , µ(fk), ν(fk+1), ν(fk+2), ν(fk+1fk+2)) =
k+3∑
j=1

αjfxj ,

where µ(fi) :=
∫
fi dµ. Therefore

µ(fi) =
k+3∑
j=1

αjfi(xj)

for each i = 1, . . . , k, and

ν(fk+1) =
k+3∑
j=1

αjfk+1(xj),

ν(fk+2) =
k+3∑
j=1

αjfk+2(xj),

ν(fk+1fk+2) =
k+3∑
j=1

αjfk+1(xj)fk+2(xj).

So the discrete distribution ν ′ =
∑k+3

j=1 αjδxj is in the weak neighborhood

Vµ(ϵ; f1, . . . , fk),

but it is not negatively associated. ■

The study of the interior of the set of negatively associated distributions is com-
plicated by the fact that the covariance condition for negative association must be
checked on infinitely many functions (in order to establish negative association for
a single measure). This situation can however be avoided when the distribution
is supported on a finite subset of Rn (by a compactness argument in Section 2.2
below). On a finite product probability space Xn, the space of probability distri-
butions is finite-dimensional, and we may conclude as will be done in Section 2.2
that the interior of the collection of NA distributions is non-empty. Note that since
the set of distributions on a finite space is finite-dimensional, the two topologies
(weak and total variation) discussed here coincide.

On the other hand, a probability measure is negatively correlated (on Rn) if
finitely many covariance conditions (1.1) are satisfied. Because of this, we may
prove that the weak interior of the class of NC distributions is non-empty in the
space of distributions supported on a fixed compact set X ⊂ Rn.
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PROPOSITION 2.2. Let X ⊂ Rn be a compact subset. Then MNC(X) ⊂
M(Rn) has a non-empty interior in the weak topology.

Proof. It suffices to show that
∫
xixj dµ−

∫
xi dµ

∫
xj dµ is continuous in µ,

which follows from the fact that the functions fij(x) = xixj , 1 ¬ i, j ¬ n, and
fk(x) = xk, 1 ¬ k ¬ n, are bounded. ■

This result however does not hold when we consider the class of negatively
correlated distributions supported on all of Rn.

PROPOSITION 2.3. The collection of negatively correlated distributions on Rn

has no interior in the total variation topology (and hence in the weak topology).

Proof. Let µ be a negatively correlated distribution. Consider the distribution
νc = 1

2(δ−c1 + δc1) (a sum of point masses at two points), where c > 0 is large
and 1 = (1, . . . , 1). We note that νc has total variation 1. We claim that for any
neighborhood V of µ (in the TV metric), there is a distribution in V that is posi-
tively correlated, of the form µα,c = αµ+(1−α)νc for some α ∈ (0, 1) close to 1
and c > 0.

The idea here is that the distribution νc has a positive correlation that is arbi-
trarily large as c becomes large, so that adding only a small multiple (1− α)vc (if
c is large) will cause a distribution to become positively correlated.

Note first that

∥µ− µα,c∥TV = ∥(1− α)µ+ (α− 1)νc∥TV

¬ (1− α)∥µ∥TV + (1− α)∥νc∥TV = 2(1− α),

which is arbitrarily small for α close to 1 (uniformly in c). Hence, uniformly in c,
the measure µα,c is in V for α sufficiently close to 1, which we assume is the
case. However, for this value of α, we now allow c to grow larger. Note that the
covariance equals∫

xixj dµα,c =
∫
xixj d[αµ+ (1− α)νc]

= α
∫
xixj dµ+ 1

2(1− α)
∫
xixj d[δ−c1 + δc1]

= α
∫
xixj dµ+ 1

2(1− α)[c2 + c2],

which for sufficiently large c is clearly positive. Thus any TV neighborhood V of µ
has a positively correlated distribution in it. ■

As a consequence of Proposition 2.3 we have

PROPOSITION 2.4. The spaceMNA on all of Rn has an empty interior with
respect to both the TV and weak topologies.

However, on a compact set X ⊂ Rn, the spaceMNA(X) has a non-empty TV
interior:
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PROPOSITION 2.5. Let X ⊂ Rn be a compact subset. ThenMNA(X) has a
non-empty interior with respect to the total variation metric.

Proof. It is not hard to show that if ∥µ − ν∥TV < ϵ, then we have
|Covµ(f, g)− Covν(f, g)| ¬ 3ϵ for all f, g satisfying ∥f∥∞, ∥g∥∞ ¬ 1.

According to Lemma 2.1, let µ be strictly NA so that Covµ(f, g) < −ϵ for all
strictly non-decreasing f(xI), g(xJ) of total variation 1 defined on disjoint index
subsets I, J ⊂ {1, . . . , n}, and some ϵ > 0. Choose µ′ such that ∥µ−µ′∥TV < ϵ/6.
Then

(2.1) Covµ′(f, g) < ϵ/2 + Covµ(f, g) < −ϵ/2 < 0.

For general f and g (not of total variation 1), (2.1) holds by multiplying these by
constants, without changing the negative covariance. This completes the proof. ■

For a compact X , since MNA(X) ⊂ MNC(X), it immediately follows that
the interior of the collection of NC distributions is non-empty in the total variation
topology (this also follows from the fact that it is non-empty in the weak topology):

COROLLARY 2.1. For a compact X ⊂ Rn,MNC(X) has a non-empty interior
with respect to the total variation metric.

2.2.MNC andMNA on the Boolean cube. We reformulate the conditions for neg-
ative correlation and negative association on the Boolean cube In = {0, 1}n as
polynomial inequalities. We consider a compactness argument in the case of strict
negative association in order to get a handle on the infinity of conditions contained
within definition (1.3). Restricting these measures to the Boolean cube affords
great flexibility due to the topological properties of both the space of probability
measures and the space of continuous functions on the said cube.

Denote by µ(i), i = 1, . . . , n, and µ(i,j), 1 ¬ i, j ¬ n, respectively, the one-
and two-dimensional marginals of µ. On the Boolean cube In = {0, 1}n we have
Exi = µ(i)(1) for each i = 1, . . . , n, and Exixj = µ(i,j)(1, 1) for all 1 ¬ i, j ¬ n.
The condition of negative correlation therefore reduces to

(2.2) µ(i,j)(1, 1) ¬ µ(i)(1)µ(j)(1), ∀1 ¬ i, j ¬ n.

Any probability measure µ on the Boolean cube is uniquely determined by a vector
of length 2n, µ = (µ1, . . . , µ2n), such that

∑
i µi = 1. Thus (2.2) may be written

in the form

(2.3) pµ(µ1, . . . , µ2n) ¬ 0,

where pµ is a polynomial in µ1, . . . , µ2n .
Now consider definition (1.3) of negative association, specialized to the

Boolean cube. Denote by I and J disjoint subsets of indices in {1, . . . , n}, and
by xI , xJ vectors restricted to the indices of I and J respectively. Further, let
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µ(I), µ(J) denote the respective marginal distributions as defined in (1.2). Then
the condition of negative association may be written∑

xI ,xJ

f(xI)g(xJ)µ(xI , xJ) ¬
∑

xI ,xJ

f(xI)g(xJ)µ
(I)(xI)µ

(J)(xJ)

or

(2.4)
∑

xI ,xJ

f(xI)g(xJ)
(
µ(xI , xJ)− µ(I)(xI)µ

(J)(xJ)
)
¬ 0.

As in (2.3), this may be reformulated as

(2.5) pf,g(µ1, . . . , µ2n) ¬ 0,

where pf,g(µ1, . . . , µ2n) is a polynomial in µ1, . . . , µ2n depending on f and g.
Inequality (2.2) must hold for 1 ¬ i, j ¬ n, which is a finite number of con-

straints. Inequality (2.4) must hold for all non-decreasing f and g, and disjoint
index sets I and J – an infinite number of constraints. Let us however restrict
our attention to the set of all strictly NA distributions, i.e. those µ for which strict
inequality holds in (2.4):

Covµ(f(xI), g(xJ)) < 0

for all monotone f and g. Multiplying (2.4) by a constant, we may assume such f
and g are uniformly bounded. Note also that every function f : {0, 1}n → R is a
polynomial of bounded degree. Consider the space of non-decreasing, uniformly
bounded polynomials of degree at most n (in the space of continuous functions
C({0, 1}n) equipped with the∞-norm). Such polynomials of a finite degree com-
pose a finite-dimensional space. Moreover, the supremum norm on this space is
equivalent to the supremum norm on the coefficients, which is equivalent to the
equicontinuity of the space. Thus by the Arzelà–Ascoli theorem, this space is com-
pact in the∞-norm. Thus given a covering of the space by balls in the∞-norm, we
may reduce to a finite subcover, and in choosing the centers of these balls, we may
reduce a covariance condition as follows. As the covariance operator is continuous,
there exists ϵ > 0 and finitely many f1, . . . , fm and g1, . . . , gm such that if

Covµ(fi(xI), gi(xJ)) < −ϵ

for all i, j = 1, . . . ,m, then

Covµ(f(xI), g(xJ)) < 0

for all f, g non-decreasing. Or in the language of (2.5), with the same ϵ > 0 and
f1, . . . , fm and g1, . . . , gm such that

(2.6) pfi,gi(µ1, . . . , µ2n) < −ϵ, i = 1, . . . ,m,
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we have
Covµ(f(xI), g(xJ)) < 0

for all f, g non-decreasing.
From the viewpoint of (2.2) and (2.6), the conditions of strict negative corre-

lation and strict negative association on the Boolean cube are continuous in the
parameters µ1, . . . , µ2n of a given distribution µ. That is, the condition will still be
satisfied under small perturbations of µ1, . . . , µ2n .

Of course, the space of probability measures on the Boolean cube is finite-
dimensional, and all Hausdorff vector topologies on a finite-dimensional space are
equivalent. Thus one may define basic open sets by (1.8) or by (1.9). Or, equiva-
lently, one may choose the Euclidean topology induced by the coordinate system
µ = (µ1, . . . , µ2n). As the conditions defining both the class of NC and NA distri-
butions are continuous in this Euclidean topology, we moreover obtain

THEOREM 2.1. LetMNC andMNA denote the spaces of NC and NA distribu-
tions on the Boolean cube. We have

∂MNC ⊂ {µ ∈MNC : µ(i,j)(1, 1) = µ(i)(1)µ(j)(1) for some i, j}

and

∂MNA ⊂ {µ ∈MNA : ∃f, g non-constant, non-decreasing,
Covµ(f(xI), g(xJ)) = 0 for some I, J},

where I and J are disjoint subsets of {1, . . . , n}. Moreover, the interior ofMNC
and the interior ofMNA are non-empty.

2.3. Convexity and connectedness. We further our study of the topological prop-
erties of the spaces of negatively associated and negatively correlated distributions
by considering properties of convexity and connectedness. We consider such ques-
tions on both the Boolean cube and on all of Rn.

2.3.1. Convexity properties of the space of negatively associated distributions

THEOREM 2.2. The space of negatively associated distributions on Rn is not
convex.

Proof. We consider strictly negatively associated distributions µ and ν, which
exist by Lemma 2.1. We show that there exist increasing functions f, g and
a λ ∈ (0, 1) for which the condition of negative association fails for the measure
λµ+ (1− λ)ν.

We begin with a general algebraic manipulation. Given increasing f and g de-
fined on disjoint index sets, there exist ϵ1 and ϵ2 such that∫

fg dµ =
∫
f dµ

∫
g dµ− ϵ1,∫

fg dν =
∫
f dν

∫
g dν − ϵ2.
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Setting A :=
∫
f dµ, B :=

∫
f dν, C :=

∫
g dµ, and D :=

∫
g dν, it follows that∫

fg d(λµ+ (1− λ)ν) = λ
∫
fg dµ+ (1− λ)

∫
fg dν

= λ
∫
f dµ

∫
g dµ+ (1− λ)

∫
f dν

∫
g dν

− (λϵ1 + (1− λ)ϵ2)

= λAC + (1− λ)BD − (λϵ1 + (1− λ)ϵ2).

Further, we have∫
f d(λµ+ (1− λ)ν)

∫
g d(λµ+ (1− λ)ν)

= (λA+ (1− λ)B)(λC + (1− λ)D)

= λ2AC + λ(1− λ)AD + λ(1− λ)BC + (1− λ)2BD.

The condition of convexity therefore becomes

λAC + (1− λ)BD − (λϵ1 + (1− λ)ϵ2)

¬ λ2AC + λ(1− λ)AD + λ(1− λ)BC + (1− λ)2BD

for 0 ¬ λ ¬ 1. Simplifying, we obtain

λ2(A−B)(C −D)− λ(A−B)(C −D) ­ −(λϵ1 + (1− λ)ϵ2).

Upon setting C̃1 = (A−B)(C −D) this becomes

(2.7) C̃1λ
2 − C̃1λ ­ −(λϵ1 + (1− λ)ϵ2).

Thus we must show that (2.7) fails for certain increasing f, g and λ ∈ (0, 1).
If C̃1 < 0, then the quadratic C̃1λ

2 − C̃1λ = C̃1λ(λ − 1) is non-negative for all
0 ¬ λ ¬ 1, thus satisfying (2.7). However, we claim that if C̃1 > 0, then (2.7) will
not hold for certain λ ∈ (0, 1), as is shown below (this would complete the proof
of non-convexity).

To this end, we will need to guarantee C̃1 > 0; this can be accomplished by
choosing µ and ν in such a way that A =

∫
f dµ >

∫
f dν = B, and C =∫

g dµ >
∫
g dν = D.

Given real numbers p1, . . . , pn we can translate the mean of a probability mea-
sure µ in each variable by pi without changing the covariance structure of µ.
Specifically, map µ 7→ µ ◦T−1, where the transformation T : Rn → Rn is defined
by

T (x1, . . . , xn) = (xi + pi)i=1,...,n = (yi)i=1,...,n.

By the change of variables formula, for any integrable f ,∫
Rn

f(y) d(µ ◦ T−1)(y) =
∫
Rn

f(Tx) dµ(x)
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In particular,

(2.8)
∫
Rn

yi d(µ ◦ T−1)(y) =
∫
Rn

xi dµ(x) + pi.

Thus a short calculation shows that Covµ◦T−1(yi, yj) = Covµ(xi, xj). What is
more, since T is mere translation, it preserves the product ordering on Rn, that is,
x ­ y if and only if Tx ­ Ty. Therefore a function f is non-decreasing on Rn if
and only if f ◦T is non-decreasing on Rn, whence µ is negatively associated if and
only if µ ◦ T−1 is negatively associated. We may thus assume that A =

∫
f dµ >∫

f dν = B, and C =
∫
g dµ >

∫
g dν = D. Thus C̃1 > 0.In this case the

quadratic C̃1λ
2 − C̃1λ is bounded above by 0 for all 0 ¬ λ ¬ 1, and its minimum

value is attained at λ = 1/2. If convexity is to hold, then (2.7) must be valid when
λ = 1/2. Setting λ = 1/2 in (2.7) we obtain

C̃1

4
¬ 1

2
(ϵ1 + ϵ2).

This is evidently false if ϵ1 and ϵ2 can be made arbitrarily small independent of C̃1,
or C̃1 can be made large independent of ϵ1 and ϵ2.

We can alter the value of C̃1 via a translation operator T independent of ϵ1
and ϵ2. Indeed, as was also considered in the proof of Lemma 2.1, we may replace
f(xI) with f(xI)− c1 for some constant c1, and g(xJ) with g(xJ)− c2 for some
constant c2, without changing Covµ(f(xI), g(xJ)) = −ϵ1. The same can be said
when considering ν and ϵ2. Thus, C̃1 can be made large independent of ϵ1 and ϵ2.
This proves the result.

Thus it is shown that the space of negatively associated distributions on Rn is
non-convex. ■

2.3.2. Non-convexity ofMNC(Rn) Define the sets

(2.9) Ep1,...,pn := {µ ∈MNC(Rn) : Eµxi = pi, i = 1, . . . , n}.

COROLLARY 2.2. The space of negatively correlated distributions on Rn is not
convex. However, for any fixed p1, . . . , pn ∈ R, the collection Ep1,...,pn of measures
is convex.

Proof. The non-convexity follows as in the proof of Theorem 2.2. Specifically,
given strictly negatively correlated distributions µ and ν, fix i, j and note that∫

xixj dµ =
∫
xi dµ

∫
xj dµ− ϵ1

for some ϵ1 > 0, and ∫
xixj dν =

∫
xi dν

∫
xj dν − ϵ2
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for some ϵ2 > 0. Set A =
∫
xi dµ, B =

∫
xi dν, C =

∫
xj dµ, and D =

∫
xj dν.

Then if convexity is to hold, we once again must have

λAC + (1− λ)BD − (λϵ1 + (1− λ)ϵ2)

¬ λ2AC + λ(1− λ)AD + λ(1− λ)BC + (1− λ)2BD

for 0 ¬ λ ¬ 1. Now with C̃2 = (A−B)(C −D) this simplifies to

(2.10) C̃2λ
2 − C̃2λ ­ −(λϵ1 + (1− λ)ϵ2).

If we can show that there exist NC distributions µ and ν such that C̃2 > 0, then
upon setting λ = 1/2 in (2.10), we will arrive at the condition

C̃2

4
¬ 1

2
(ϵ1 + ϵ2),

which will fail for small enough ϵ1, ϵ2 if we can make C̃2 large enough independent
of ϵ1, ϵ2.

Thus we must show that there exist NC µ and ν such that C̃2 > 0, and such that
ϵ1 and ϵ2 are sufficiently small. That is,

∫
xi dµ >

∫
xi dν and

∫
xj dµ >

∫
xj dν,

for i ̸= j. Given real numbers p1, . . . , pn we can translate the mean of a probability
measure µ in each variable by pi without changing the covariance structure of µ,
as described in (2.8). Specifically, map µ 7→ µ ◦ T−1, where the transformation
T : Rn → Rn is defined by

T (x1, . . . , xn) = (xi + pi)i=1,...,n = (yi)i=1,...,n.

By the change of variables, for any integrable f ,∫
Rn

f(y) d(µ ◦ T−1)(y) =
∫
Rn

f(Tx) dµ(x).

In particular, ∫
Rn

yi d(µ ◦ T−1)(y) =
∫
Rn

xi dµ(x) + pi.

Thus Covµ◦T−1(yi, yj) = Covµ(xi, xj). Thus given NC distributions µ and ν, we
may always translate µ until its mean values in each coordinate, i.e.

∫
xi dµ(x),

dominate the mean values of ν in each coordinate. This does not change the covari-
ance structure of µ, and therefore preserves negative correlation, and in particular
ϵ1 and ϵ2.

We now prove that Ep1,...,pn is convex for each fixed p1, . . . , pn ∈ R. This
follows from (2.10). Indeed, if C̃2 = 0 then certainly (2.10) holds for each 0 ¬
λ ¬ 1, and therefore the collection of NC distributions which satisfy C̃2 = 0 for
each 1 ¬ i < j ¬ n will be convex. We have C̃2 = 0 whenever

∫
xi dµ =

∫
xi dν,

and therefore if
∫
xi dµ =

∫
xi dν = pi for each i = 1, . . . , n, then their convex

combination λµ+ (1− λ)ν will be NC for each 0 ¬ λ ¬ 1. The result follows. ■
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2.3.3. Non-convexity ofMNC(In)

LEMMA 2.2. For any 0 < ϵ < 1 and 1 ¬ i ¬ n, there exists a negatively
correlated distribution on the Boolean cube In = {0, 1}n satisfying µ(i)(1) = ϵ.
In fact, given 0 < ϵi < 1, i = 1, . . . , n, satisfying

∑
i ϵi = 1, there exist a

negatively correlated distribution on In satisfying µ(i)(1) = ϵi, i = 1, . . . , n.

Proof. Given 1 ¬ i ¬ n, define a distribution as follows:

µi,ϵ := ϵδei + (1− ϵ)δej ,

where i ̸= j and ei = (0, . . . , 1, . . . , 0) is the vector with a single 1 in the ith
component. We see that µ(i)

i,ϵ (1) = ϵ. What is more,

Eµi,ϵxkxℓ = µ
(k,ℓ)
i,ϵ (1, 1) = 0

for all 1 ¬ k, ℓ ¬ n, and thus

Eµi,ϵxkxℓ −Eµi,ϵxkEµi,ϵxℓ ¬ 0.

The first result follows.
Define a measure µ as the convex combination of point masses centered at

each ei:
µ :=

∑
i

ϵiδei ,
∑

ϵi = 1.

Evidently, for each j = 1, . . . , n, µ(j)(1) = ϵj , and for each i ̸= j, µ(i,j)(1, 1) = 0.
Thus µ is strictly negatively correlated:

µ(i,j)(1, 1)− µ(i)(1)µ(j)(1) = −ϵiϵj .

Further, µ satisfies the requirements on the one-dimensional marginals. The result
follows. ■

COROLLARY 2.3. The space of negatively correlated distributions on In is
non-convex. However, for any fixed p1, . . . , pn ∈ R, the collection of measures

Ep1,...,pn = {µ ∈MNC(In) : µ
(i)(1) = pi, i = 1, . . . , n}

is convex.

Proof. We begin with strictly negatively correlated distributions µ and ν, which
exist by Lemma 2.1. We derive conditions under which the convex combination
λµ + (1 − λ)ν fails to be negatively correlated. We then produce strictly nega-
tively correlated distributions whose convex combination fails to satisfy the above-
mentioned condition.

Note that Eµxi = µ(i)(1) and Eµxixj = µ(i,j)(1, 1) on the Boolean cube. Thus
given strictly negatively correlated distributions µ and ν, fix i, j and note that

µ(i,j)(1, 1) = µ(i)(1)µ(j)(1)− ϵ1
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for some ϵ1 > 0, and

ν(i,j)(1, 1) = ν(i)(1)ν(j)(1)− ϵ2

for some ϵ2 > 0. Set A = µ(i)(1), B = ν(i)(1), C = µ(j)(1), and D = ν(j)(1).
Then if convexity is to hold, we once again must have (see proof of Theorem 2.2
above, where the roles of f and g are played by xi and xj)

λAC + (1− λ)BD − (λϵ1 + (1− λ)ϵ2)

¬ λ2AC + λ(1− λ)AD + λ(1− λ)BC + (1− λ)2BD

for 0 ¬ λ ¬ 1. Now with C̃3 = (A−B)(C −D) this simplifies to

C̃3λ
2 − C̃3λ ­ −(λϵ1 + (1− λ)ϵ2).

As this holds for C̃3 = 0, the second statement of the corollary holds.
Now set λ = 1/2. We arrive at the condition

C̃3

4
¬ 1

2
(ϵ1 + ϵ2).

Our strategy is as follows. We introduce measures µ and ν as convex combina-
tions of point masses at the standard basis vectors. We demonstrate that the above
inequality is valid. We then define a perturbation of this measure under which the
inequality is violated, whereby we obtain a convex combination of measures which
fail to be negatively correlated.

According to Lemma 2.2, there exist strictly negatively correlated distributions
with C̃3 > 0. Specifically, define

µ =
∑
k

βkδek , ν =
∑
k

β′kδek ,

where
∑

k βk = 1 and
∑

k β
′
k = 1. Then

C̃3 = (βi − β′i)(βj − β′j),

where we have used that C̃3 = (A − B)(C −D) and A = µ(i)(1), B = ν(i)(1),
C = µ(j)(1), and

ϵ1 = βiβj , ϵ2 = β′iβ
′
j .

Thus the condition
C̃3

4
¬ 1

2
(ϵ1 + ϵ2)

becomes
(βi − β′i)(βj − β′j)

4
¬ 1

2
(βiβj + β′iβ

′
j).

This inequality reduces to

βiβj + β′iβ
′
j + βiβ

′
j + β′iβj ­ 0,

which holds for all non-negative reals.
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Since strict negative correlation is continuous in the Euclidean parameters of
the distribution, we may perturb the above convex measure as follows. Define µ
as above, but perturbed with a small additional weight given to (1, 1, 0, . . . , 0):
µ(1, 1, 0, . . . , 0) = ϵ. Here ϵ > 0 is small enough so that µ is still negatively
correlated. Compensating this increased weight by a total decrease in the other
decoupled positive weights totaling ϵ to keep normalization will still not affect
negative correlation if ϵ is sufficiently small. Then µ(1,2)(1, 1) = ϵ and µ(i)(1) =
βi + ϵ for i = 1, 2 . If we do the same for ν, with the same ϵ perturbation, then C̃3

does not change: indeed, for i = 1, j = 2,

C̃3 = (A−B)(C −D)

= (β1 + ϵ− β′1 − ϵ)(β2 + ϵ− β′2 − ϵ)

= (β1 − β′1)(β2 − β′2).

We may assume that C̃3 > 0, by virtue of choosing β1 > β′1 and β2 > β′2. On the
other hand, for ϵ > 0 small enough,

−ϵ1 ≡ µ(1,2)(1, 1)− µ(1)(1)µ(2)(1) < 0

as the quantity

µ(1,2)(1, 1)− µ(1)(1)µ(2)(1) = ϵ− (β1 + ϵ)(β2 + ϵ)

is continuous in ϵ, and approaches −β1β2 from above as ϵ → 0. For β1 and β2
small enough, the quantity

ϵ− (β1 + ϵ)(β2 + ϵ)

will be positive; letting ϵ tend to 0 shows that this quantity will pass through zero,
towards −β1β2. This shows that ϵ1 will move through 0, and thus the inequality

C̃3

4
¬ 1

2
(ϵ1 + ϵ2)

will be violated, as consideration of ϵ2 will be analogous.
It follows that the right hand side of the above inequality will decrease. And thus

we can, by continuity, decrease the right hand side until the inequality is violated.
Thus it is shown that the space of negatively correlated distributions on the Boolean
cube is non-convex. ■

2.3.4. Non-convexity ofMNA(In)

LEMMA 2.3. For any 1 ¬ i ¬ n and 0 < ϵ < 1, there exists a negatively
associated distribution µ on In = {0, 1}n satisfying µ(i)(1) = ϵ.

Proof. As in the proof of Lemma 2.1, any distribution supported on

In,1 =
{
(x1, . . . , xn) ∈ In :

∑
j

xj = 1
}
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is strictly negatively associated. Such a measure will be of the form

µ =
∑

xk∈In,1

αkδxk

where
∑

k αk = 1. Given 1 ¬ i ¬ n and 0 < ϵ < 1, on setting αi = ϵ, and
determining the remaining coefficients by the condition

∑
k αk = 1, we see that

µ(i)(1) = ϵ. ■

COROLLARY 2.4. The space of negatively associated distributions on In is
non-convex.

Proof. Following once again the proof of Theorem 2.2, we set A :=
∫
In

f dµ,
B :=

∫
In

f dν, C :=
∫
In

g dµ, and D :=
∫
In

g dν, and obtain the same inequality
dictating convexity:

λ2(A−B)(C −D)− λ(A−B)(C −D) ­ −(λϵ1 + (1− λ)ϵ2)

for all 0 ¬ λ ¬ 1. Recall once again that ϵ1 and ϵ2 are defined by the initial
assumption: Given increasing f and g defined on disjoint index sets, there exist ϵ1
and ϵ2 such that ∫

fg dµ =
∫
f dµ

∫
g dµ− ϵ1,∫

fg dν =
∫
f dν

∫
g dν − ϵ2.

Upon setting C̃4 = (A−B)(C −D) this becomes

(2.11) C̃4λ
2 − C̃4λ ­ −(λϵ1 + (1− λ)ϵ2).

This condition is satisfied whenever C̃4 = 0 or C̃4 < 0, and fails when C̃4 > 0 for
small enough ϵ > 0.

Following the proof of Lemma 2.1, we define strictly negatively associated dis-
tributions µ and ν. We consider once again the inequality

(2.12)
C̃4

4
¬ 1

2
(ϵ1 + ϵ2)

relative to the context at hand. It suffices to verify that for certain f, g and measures
µ, ν, the inequality is invalid. We may translate the means without changing the
covariance structure, thus C̃1 may be translated, or increased, independent of ϵ1
and ϵ2. Indeed, as was also considered in the proof of Lemma 2.1, we may replace
f(xI) with f(xI) − c1 for some constant c1, and g(xJ) with g(xJ) − c2, without
changing Covµ(f(xI), g(xJ)) = −ϵ1. The same can be said when considering ν
and ϵ2. Thus, C̃4 can be made large independent of ϵ1 and ϵ2. This proves the result.

This shows that (2.11) fails for λ = 1/2, whereby convexity is violated for the
corresponding distribution. Thus the space of negatively associated distributions
on the Boolean cube is non-convex. ■
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2.3.5. Connectedness properties of the spaces of negatively correlated and negatively
associated distributions

THEOREM 2.3. The space of negatively correlated and the space of negatively
associated distributions on the Boolean cube, and on Rn, are path connected in
the weak topology.

Proof. For any negatively associated measure µ, consider the family of mea-
sures µt such that for any set A, µt(A) = µ(A/t); here 0 < t ¬ 1. Each measure
µt is negatively associated. For t = 0 we define µ0 to be the point mass at the ori-
gin. We have defined A/t to be the set of all points in A divided by the constant t.
As we scale t from 1 to 0, this effectively concentrates the measure µ through this
scaling into a point mass at the origin, while preserving negative association in the
process. Indeed, assuming A is a ball away from the origin, the mass of the set
A/t approaches zero as t → 0, as the distance of A/t from the origin approaches
infinity as t → 0. It follows that µ(A/t) converges weakly to the point mass at
the origin. This provides a path connecting any two negatively associated distribu-
tions to the point mass at 0, proving that the family is path connected in the weak
topology. ■
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