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POWER MEANS OF RANDOM VARIABLES AND CHARACTERIZATIONS
OF DISTRIBUTIONS VIA FRACTIONAL CALCULUS

BY
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Abstract. We investigate fractional moments and expectations of power
means of complex-valued random variables by using fractional calculus. We
deal with both negative and positive orders of the fractional derivatives. The
one-dimensional distributions are characterized in terms of the fractional
moments without any moment assumptions. We explicitly compute the ex-
pectations of the power means for both the univariate Cauchy distribution
and the Poincaré distribution on the upper half-plane. We show that for these
distributions the expectations are invariant with respect to the sample size
and the value of the power.
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1. INTRODUCTION

The strong law of large numbers is fundamental to probability. This law states
that the arithmetic mean of independent and identically distributed (i.i.d.) random
variables converges almost surely to a constant. This constant is equal to the ex-
pectation of the respective random variable. For stochastic processes, once we es-
tablish the law of large numbers, we move on to more sophisticated limit theorems
such as the central limit theorem. For non-integrable i.i.d. random variables such
as Cauchy distributions, the law of large numbers fails for the arithmetic mean. In
order to establish universality for non-integrable i.i.d. random variables, we need
to consider an alternative statistic other than the arithmetic mean.

The framework of quasi-arithmetic means provides an alternative approach
to universality. This notion was introduced independently by Kolmogorov [7],
Nagumo [12], and de Finetti [6]. They proposed axioms of means and showed
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that if the axioms hold for an n-ary operation on an interval of real numbers, then
the operation is a quasi-arithmetic mean. It is defined by

Mf
n = Mf

n (x1, . . . , xn) := f−1
(
1

n

n∑
j=1

f(xj)

)
for a generator f ; Mf

n is the arithmetic mean if f(x) = x. This framework includes
geometric, harmonic, and power means. The random variable Mf

n (X1, . . . , Xn),
where X1, . . . , Xn are i.i.d. random variables, can be integrable even if X1 is non-
integrable, and it plays a similar role to the arithmetic mean of i.i.d. random vari-
ables. Limit theorems such as the strong law of large numbers and the central
limit theorem hold. The strong law of large numbers states that limn→∞Mf

n =
f−1(E[f(X1)]) almost surely and it follows directly from the usual strong law of
large numbers if f(X1) ∈ L1. The central limit theorem is more complicated, but
it follows from the delta method (Carvalho [5]). Recently, limit theorems of more
general means of i.i.d. random variables have been considered by Barczy and Bu-
rai [2] and Barczy and Páles [3]. By considering complex-valued quasi-arithmetic
means of i.i.d. random variables, we can deal with heavy-tailed random variables
supported on R. Akaoka and the present authors [1] considered integrability and
asymptotic variances of quasi-arithmetic means and gave applications to quasi-
arithmetic means of Cauchy distributions.

The expectation of the arithmetic mean of i.i.d. integrable random variables is
equal to the expectation of the respective random variable. However, the expec-
tation of Mf

n , E[Mf
n ], is difficult to compute explicitly, because Mf

n is defined
by using f−1, which can be non-linear. In this paper, we consider E[Mf

n ] for the
case of complex-valued power means, more specifically, the generator is given
by f(z) = zp, p ∈ [−1, 1], p ̸= 0. Each power mean is a homogeneous quasi-
arithmetic mean. The class of power means for p ∈ (−1, 0) interpolates between
the harmonic mean and the geometric mean, and, for p ∈ (0, 1) the class interpo-
lates between the geometric mean and the arithmetic mean.

We deal with the fractional moment E[Zλ] of a complex-valued random vari-
able Z with a complex power λ, and furthermore the expectation of the power
mean E

[(
1
n

∑n
j=1 Z

p
j

)1/p] of i.i.d. complex-valued random variables (Zj)j for
p ∈ [−1, 1]. We explain why we use fractional calculus to compute them. Let
φZ(t) := E[exp(itZ)]. If E[|Z|n] < +∞ for some n ∈ N, then

∂n

∂tn
φZ(t)

∣∣∣∣
t=0

= inE[Zn].

We replace the natural number n, the order of the derivative, with a fractional
number λ and then we formally obtain

∂λ

∂tλ
φZ(t)

∣∣∣∣
t=0

= iλE[Zλ].
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Part of our paper is devoted to justifying this heuristic argument. There are sev-
eral different frameworks for fractional derivatives (Oldham and Spanier [15]). Here
we adopt the Riemann–Liouville integral for Re(λ) < 0 and Marchaud’s frac-
tional derivative [10] for Re(λ) > 0. Then we proceed to consider the case of Z =
1
n

∑n
j=1 Z

p
j and λ = p ∈ [−1, 1]. The relationship between fractional calculus

and the fractional absolute moment E[|X|p] of a real-valued random variable X for
p ∈ R has been considered in many papers. For more details, see Matsui and Pawlas
[11] and references therein. Here we consider connections between fractional cal-
culus and fractional (non-absolute) moments of complex-valued random variables.

By using our results for the fractional moment, we show that certain subfamilies
of the expectations {E[(X+α)λ] : α ∈ H, λ ∈ C} characterize the distribution of
a real-valued random variable X , where H is the upper half-plane and H is its clo-
sure. Our results are partly similar to those of Lin [9], but with notable differences.
We consider X + α instead of X , which makes the considerations for Re(λ) < 0
much clearer, since with this modification we do not need to impose any integrabil-
ity conditions on X . Furthermore, the notion of determining sets of holomorphic
functions is involved.

Our framework is applicable to Poincaré distributions, which are a parametric
family of distributions supported on H recently introduced by Tojo and Yoshino
[18, 19]. If Z follows a Poincaré distribution, we can explicitly compute φZ .
By using our results for the fractional moment, we can compute E[Zλ

1 ] and
E
[(

1
n

∑n
j=1 Z

p
j

)1/p] if Z1 follows a Poincaré distribution. Similarly, we can deal
with the case of Zj = Xj + α where α ∈ H and (Xj)j are i.i.d. real-valued
random variables following a Cauchy distribution or a t-distribution with three de-
grees of freedom. For the Poincaré and Cauchy distributions, E

[(
1
n

∑n
j=1 Z

p
j

)1/p]
does not depend on the sample size n or the parameter p. However, this fails for
the t-distribution with three degrees of freedom.

The paper is organized as follows. In Sections 2 and 3, we give integral ex-
pressions for the fractional moment E[Zλ] and the expectation of the power mean
E
[(

1
n

∑n
j=1 Z

p
j

)1/p] by using φZ . The cases of Re(λ) < 0 and Re(λ) > 0 are
considered in Sections 2 and 3 respectively. In Section 4, by using the results of
Sections 2 and 3, we show that certain subfamilies of {E[(X+α)λ]}α,λ character-
ize the distribution of a real-valued random variable X . In Section 5, we compute
the expectations of the complex-valued power means of Cauchy distributions, t-
distributions with three degrees of freedom, and Poincaré distributions. In the Ap-
pendix, we compare the fractional absolute moment with the absolute value of the
fractional moment.

Notation. For z ∈ C, z ̸= 0, we let log z := log |z| + iθ, where z = r exp(iθ),
−π < θ ¬ π and r > 0. For λ ∈ C, let

zλ :=

{
exp(λ log z), z ̸= 0,

0, z = 0.
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Let A be the closure of a subset A of C. Let H := {x + yi : x ∈ R, y > 0},
and −H := {x + yi : x ∈ R, y < 0}. Let U := iH = {x + yi | x < 0, y ∈ R}
and V := −U = −iH = {x+ yi | x > 0, y ∈ R}.

Let the Gamma function be Γ(λ) :=
∫∞
0

tλ−1 exp(−t) dt for λ ∈ V. For a
complex-valued random variable Z, we denote the distribution of Z by PZ . For
r > 0, we write Z ∈ Lr if |Z| ∈ Lr. For every α ∈ C, Z ∈ Lr if and only if
Z + α ∈ Lr.

2. FRACTIONAL DERIVATIVE OF NEGATIVE ORDER

We use the Riemann–Liouville integral as in Wolfe [21] and Cressie and Borkent
[4, Definition 1].

DEFINITION 2.1. Let λ∈U . For a Borel measurable function f : (−∞, 0]→C,

∂λ

∂tλ
f(t)

∣∣∣∣
t=0

:=
1

Γ(−λ)

∞∫
0

u−λ−1f(−u) du

if the integral exists.

It suffices to define the left derivative at t = 0 only. As indicated in [21], it
is natural to consider the fractional derivative of complex order. Here the negative
order means that the real part of the complex order is negative.

LEMMA 2.2. Let λ ∈ U . Then we have the following assertions:

(i) Let Z be an H-valued random variable. Assume that E[Im(Z)Re(λ)] < +∞.
Then Zλ ∈ L1 and

(2.1)
∂λ

∂tλ
E[exp(−itZ)]

∣∣∣∣
t=0

= (−i)λE[Zλ].

(ii) Let Z be a (−H)-valued random variable. Assume that E[(− Im(Z))Re(λ)]
< +∞. Then Zλ ∈ L1 and

∂λ

∂tλ
E[exp(itZ)]

∣∣∣∣
t=0

= iλE[Zλ].

Proof. We remark that Re(λ) < 0. We show (i); the proof of (ii) is similar. Let
z = reiθ ∈ H be such that 0 < θ < π. Then

∞∫
0

|u−λ−1 exp(iuz)| du =
∞∫
0

u−Re(λ)−1 exp(−u Im(z)) du

= Im(z)Re(λ)Γ(−Re(λ)).
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Hence by the assumption,∫
H

∞∫
0

|u−λ−1 exp(iuz)| duPZ(dz) = E[Im(Z)Re(λ)]Γ(−Re(λ)) < +∞.

Therefore we can use Fubini’s theorem to obtain

∂λ

∂tλ
E[exp(−itZ)]

∣∣∣∣
t=0

=
1

Γ(−λ)

∞∫
0

u−λ−1E[exp(iuZ)] du

=
1

Γ(−λ)
E
[∞∫
0

u−λ−1 exp(iuZ) du
]
.

By the Cauchy integral theorem,

∞∫
0

u−λ−1 exp(iuz) du = zλ
∫
Cz

ζ−λ−1 exp(iζ) dζ(2.2)

= zλ
∫
Ci

ζ−λ−1 exp(iζ) dζ

= zλi−λ
∞∫
0

u−λ−1 exp(−u) du = zλi−λΓ(−λ),

where we let Cw := {tw : t  0} for w ∈ H. Hence

(2.3) |zλ| ¬ 1

|i−λΓ(−λ)|

∞∫
0

|u−λ−1 exp(iuz)| du =
Γ(−Re(λ))
|i−λΓ(−λ)|

Im(z)Re(λ).

Now the assumption yields Zλ ∈ L1, and we get (2.1). ■

We can generalize (2.3) to the case where z ∈ −H. For λ ∈ U , there exists a
constant C(λ) such that for z ∈ C \ R,

(2.4) |zλ| ¬ C(λ)|Im(z)|Re(λ).

For example, we can put C(λ) := Γ(−Re(λ)) exp(π|Im(λ)|/2)
|Γ(−λ)| .

Now we give an application of Lemma 2.2.

PROPOSITION 2.3. Let X be a real-valued random variable and φX be the
characteristic function of X . Let λ ∈ U . Let α ∈ H. Then (X + α)λ ∈ L∞ and

E[(X + α)λ] =
iλ

Γ(−λ)

∞∫
0

t−λ−1φX(t) exp(iαt) dt.

Proof. By (2.4), supx∈R |(x+ α)λ| ¬ C(λ)|Im(α)|Re(λ). We now apply Lem-
ma 2.2(i) to Z = X + α to get the assertion. ■
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REMARK 2.4. Let α ∈ H and α→ 0. Then, formally,

E[Xλ] =
iλ

Γ(−λ)

∞∫
0

t−λ−1φX(t) dt.

This is justified if E[|X|Re(λ)] < +∞ and t−Re(λ)−1φX(t) ∈ L1. If −1 < Re(λ)
< 0 and E[|X|Re(λ)] < +∞, then

∫∞
0

t−λ−1φX(t)dt exists as a Riemann im-
proper integral (see [21, Section 5]). The integration contour in [21, Section 5] is
different from the contour in (2.2).

We now give an application to the power mean of random variables.

THEOREM 2.5. Let −1 ¬ p < 0. Let n  2. Let Z1, . . . , Zn be i.i.d. H-valued
random variables such that E[(Im(Z1)

1/p|Z1|1−1/p)1/n] < +∞. Then

∂1/p

∂t1/p
E

[
exp

(
i
t

n
Zp
1

)]n∣∣∣∣
t=0

= i1/pE

[(
1

n

n∑
j=1

Zp
j

)1/p]
.

Proof. Let Z := 1
n

∑n
j=1 Z

p
j . Since−1 ¬ p < 0, Z is (−H)-valued. We argue

as in [1, proof of Proposition 3.3(ii)]. By the geometric mean-arithmetic mean
inequality,

(2.5) E[(− Im(Z))1/p] ¬ E[(− Im(Zp
1 ))

1/(np)]n.

Let r1 > 0 and θ1 ∈ (0, π) be such that Z1 = r1 exp(iθ1). Then

(2.6) (− Im(Zp
1 ))

1/p = Im(Z1)
1/p|Z1|1−1/p

(
sin θ1

sin(−pθ1)

)−1/p
.

We see that supθ∈(0,π)
(

sin θ
sin(−pθ)

)−1/p
< +∞. From this, (2.6), and the assumption,

E[(− Im(Zp
1 ))

1/(np)] < +∞, and hence E[(− Im(Z))1/p] < +∞. Therefore we
can apply Lemma 2.2(ii) to get the assertion. ■

We now consider the continuity of the expectation of the power mean with
respect to the parameter.

PROPOSITION 2.6. Let −1 < p0 < 0. Let n  2. Let Z1, . . . , Zn be i.i.d.
H-valued random variables such that

sup
p∈(p0−ε0,p0+ε0)

E[(Im(Z1)
1/p|Z1|1−1/p)1/n+ε0 ] < +∞

for some ε0 > 0. Then E
[(

1
n

∑n
j=1 Z

p
j

)1/p] is continuous at p = p0 as a function
of p.
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Proof. Let −1 < p < 0. Let Z(p) := 1
n

∑n
j=1 Z

p
j . Since

E

[(
1

n

n∑
j=1

Zp
j

)1/p]
=

1

Γ(−1/p)

∞∫
0

u−1/p−1E[exp(−iuZ(p))] du,

it suffices to show the continuity of p 7→
∫∞
0

u−1/p−1E[exp(−iuZ(p))] du at
p = p0. By Fubini’s theorem,

∞∫
0

u−1/p−1E[exp(u Im(Z(p)))] du = Γ

(
−1
p

)
E[(− Im(Z(p)))−1/p].

By (2.5), (2.6), and the assumption, the functions p 7→ E[(− Im(Z(p)))−1/p] and
p 7→

∫∞
0

u−1/p−1E[exp(u Im(Z(p)))] du are continuous at p = p0. We remark
that |E[exp(−iuZ(p))]| ¬ E[exp(u Im(Z(p)))]. By the Lebesgue convergence
theorem, the functions p 7→ E[exp(−iuZ(p))] and p 7→ u−1/p−1E[exp(−iuZ(p))]
are continuous. Now we can apply a generalized Lebesgue convergence the-
orem (see [16, Chapter 4, Theorem 19] for example) to conclude that p 7→∫∞
0

u−1/p−1E[exp(−iuZ(p))] du is continuous at p = p0. ■

We state a result applicable to general distributions on R satisfying an integra-
bility condition.

COROLLARY 2.7. Let α ∈ H. Then we have the following:

(i) Let −1 ¬ p < 0. Let X1, . . . , Xn be i.i.d. real-valued random variables such
that X1 ∈ L(p−1)/(np). Then

∂1/p

∂t1/p
E

[
exp

(
i
t

n
(X1 + α)p

)]n∣∣∣∣
t=0

= i1/pE

[(
1

n

n∑
j=1

(Xj + α)p
)1/p]

.

(ii) Let r > 2/n. Let X1, . . . , Xn be i.i.d. real-valued random variables such that
X1 ∈ Lr. Then E

[(
1
n

∑n
j=1(Xj +α)p

)1/p] is continuous with respect to p on(
−1,− 1

nr−1
)
.

Proof. The proof is the same as that of Theorem 2.5. If Zj := Xj + α, then
Im(Z1)

1/p = Im(α)1/p < +∞. By substituting this into (2.6), we have asser-
tion (i). We show (ii). Let p ∈

(
−1,− 1

nr−1
)
. Then, by the Hölder inequality, for

sufficiently small ε > 0,

sup
p′∈(p−ε,p+ε)

E[|X1 + α|(1−1/p′)(1/n+ε)] ¬ sup
s∈[0,1]

E[|X1 + α|r]s < +∞.

Hence we can apply Proposition 2.6. ■
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REMARK 2.8. If p ∈ U and p /∈ R, then it does not necessarily hold that
Im(Zp

1 ) < 0 P -a.s., even if Z1 ∈ H. The above proof does not apply to this case.
When we consider the power means, it is natural to consider p ∈ R. One reason is
that it does not satisfy [1, Assumption 2.1], more specifically, if we let f(z) := zp,
then f(H) may be non-convex. Indeed, 0 /∈ f(H), but on the other hand, there exist
two points x1 < 0 and x2 > 0 such that x1, x2 ∈ f(H). Due to the branch cut,
log(

∑n
j=1 Z

p
j ) is not continuous with respect to p. The power means of complex

orders are interesting but much harder to deal with.

3. FRACTIONAL DERIVATIVE OF POSITIVE ORDER

We adopt the following definition as a fractional derivative of positive order. As in
the case of negative order, we consider the fractional derivative of complex order.
Here the positive order means that the real part of the complex order is positive.
We adopt Marchaud’s fractional derivative [10] instead of the Riemann–Liouville
fractional derivative, because it involves the derivative after an integration in order
to define the fractional operator. Recall that V = {λ ∈ C : Re(λ) > 0}.

DEFINITION 3.1. Let k be a non-negative integer. Let λ ∈ V be such that
λ = k + δ and 0 < Re(δ) < 1. Let f ∈ Ck((−∞, 0]). Then

∂k+δ

∂tk+δ
f(t)

∣∣∣∣
t=0

:=
δ

Γ(1− δ)

∞∫
0

f (k)(0)− f (k)(−u)
u1+δ

du.

LEMMA 3.2. Let λ ∈ V . Assume that Re(λ) /∈ N. Then we have the following
assertions:

(i) Let Z be an H-valued random variable. Assume that E[|Z|Re(λ)] < +∞. Then

∂λ

∂tλ
E[exp(−itZ)]

∣∣∣∣
t=0

= (−i)λE[Zλ].

(ii) Let Z be an −H-valued random variable. Assume that E[|Z|Re(λ)] < +∞.
Then

∂λ

∂tλ
E[exp(itZ)]

∣∣∣∣
t=0

= iλE[Zλ].

Proof. We show (i); the proof of (ii) is similar. Let f(t) := E[exp(−itZ)].
Let k be the integer part of Re(λ) and let δ := λ − k. Then 0 < Re(δ) < 1.
By the assumption that E[|Z|Re(λ)] < +∞, we see that f ∈ Ck((−∞, 0]) and
furthermore f (k)(t) = (−i)kE[Zk exp(−itZ)] for t ¬ 0.

We have
∞∫
0

∣∣∣∣1− exp(iuz)

u1+δ

∣∣∣∣ du = |z|Re(δ)
∞∫
0

|1− exp(iteiθ)|
t1+Re(δ) dt, z = reiθ, θ ∈ [0, π].
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If 0 ¬ t ¬ 1, then |1−exp(ite
iθ)|

t1+Re(δ) ¬ e
tRe(δ) . If t > 1, then |1−exp(ite

iθ)|
t1+Re(δ) ¬ 2

t1+Re(δ) .
Hence, we see that∫

H

∞∫
0

|z|k
∣∣∣∣1− exp(iuz)

u1+δ

∣∣∣∣ duPZ(dz) < +∞.

Therefore we can use Fubini’s theorem to obtain

∂λ

∂tλ
E[exp(−itZ)]

∣∣∣∣
t=0

=
(−i)kδ
Γ(1− δ)

∞∫
0

E[Zk(1− exp(iuZ))]

u1+λ
du

=
(−i)kδ
Γ(1− δ)

E

[
Zk
∞∫
0

1− exp(iuZ)

u1+δ
du

]
.

By the Cauchy integral theorem,

∞∫
0

1− exp(iuz)

u1+δ
du = zδ

∫
Cz

1− exp(iζ)

ζ1+δ
dζ(3.1)

= zδi−δ
∞∫
0

1− e−t

t1+δ
dt =

Γ(1− δ)

δ
zδi−δ.

Thus we have the assertion. ■

We now give applications of Lemma 3.2 to power means of random variables.
By Lemma 3.2(i), we immediately deduce

PROPOSITION 3.3. Let α ∈ H and λ ∈ V . Assume that Re(λ) /∈ N and
X ∈ LRe(λ). Let k be the integer part of Re(λ) and let δ := λ− k. Then

E[(X + α)λ] =
iδδ

Γ(1− δ)

∞∫
0

E[(X + α)k(1− exp(iu(X + α)))]

u1+δ
du.

We now give an application to power means of random variables. For p = 0,
we regard

(
1
n

∑n
j=1 z

p
j

)1/p as the geometric mean
∏n

j=1 z
1/n
j for z1, . . . , zn ∈ H.

THEOREM 3.4. Let 0 < p ¬ 1. Let Z1, . . . , Zn be i.i.d. H-valued random
variables such that Z1 ∈ L1. Then

(3.2)
∂1/p

∂t1/p
E

[
exp

(
−i t

n
Zp
1

)]n∣∣∣∣
t=0

= (−i)1/pE
[(

1

n

n∑
j=1

Zp
j

)1/p]
.

Furthermore, E
[(

1
n

∑n
j=1 Z

p
j

)1/p] is continuous with respect to p on [0, 1].

If p = 1/m for some natural number m, then ∂1/p

∂t1/p
denotes the ordinary mth

derivative. The proof of continuity with respect to the parameter does not involve
fractional calculus.
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Proof. The case that p = 1/m for some natural number m is just the mth
derivative of the characteristic function and the result is well-known [20, Chapter
16]. Let Z := 1

n

∑n
j=1 Z

p
j . Then, by noting 0 < p < 1, Z ∈ H. By the convexity

of x 7→ |x|1/p and the assumption that Z1 ∈ L1, we have E[|Z|1/p] < +∞. We
can apply Lemma 3.2(i) to obtain (3.2).

We remark that |Zj | = (|Zj |p)1/p and 1/p > 1. Then, by the Hölder inequality,∣∣∣∣( 1

n

n∑
j=1

Zp
j

)1/p∣∣∣∣ ¬ (
1

n

n∑
j=1

|Zj |p
)1/p

¬ 1

n

n∑
j=1

|Zj |.

By the assumption, 1
n

∑n
j=1 |Zj | is integrable. We remark that

lim
p→+0

(
1

n

n∑
j=1

Zp
j

)1/p

= lim
p→+0

exp

(
1

p
log

(
1

n

n∑
j=1

Zp
j

))
= exp

(
d

dp
log

(
1

n

n∑
j=1

Zp
j

)∣∣∣∣
p=0

)
= exp

(
1

n

n∑
j=1

logZj

)
.

The continuity assertion follows from the Lebesgue convergence theorem. ■

As in the negative case, we state a result applicable to general distributions on
R satisfying an integrability condition.

COROLLARY 3.5. Let 0 < p < 1. Let α ∈ H. Let X1, . . . , Xn be i.i.d. H-
valued random variables such that X1 ∈ L1. Then

(
1
n

∑n
j=1(Xj + α)p

)1/p ∈ L1

and

∂1/p

∂t1/p
E

[
exp

(
−i t

n
(X1 + α)p

)]n∣∣∣∣
t=0

= (−i)1/pE
[(

1

n

n∑
j=1

(Xj + α)p
)1/p]

.

Furthermore, E
[(

1
n

∑n
j=1(Xj +α)p

)1/p] is continuous with respect to p on [0, 1].

If X1 /∈ L1, then
(
1
n

∑n
j=1(Xj + α)p

)1/p
/∈ L1; see [1, Proposition 5.1(ii)].

4. CHARACTERIZATIONS OF DISTRIBUTIONS ON R

Throughout this section, we use λ for exponents of powers of complex-valued
random variables. We first consider the case that Re(λ) < 0. Recall that U =
iH = {λ ∈ C : Re(λ) < 0}.

We consider the analyticity of the moment with respect to the exponent λ. Let
UM := {z ∈ U : Re(z) > −M} for M > 0.
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LEMMA 4.1. Let Z be a complex-valued random variable. Assume that
E[|Im(Z)|−M ] < +∞ and P (Z ∈ R) = 0. Then the map λ 7→ E[Zλ] is holo-
morphic on UM , and furthermore

d

dλ
E[Zλ] = E[Zλ logZ].

Proof. Let C be a Jordan curve in UM . By (2.4), E[Zλ] is continuous on UM

and E[supλ∈C |Zλ|] ¬ E[|Im(Z)|−M ] < +∞. By Fubini’s theorem and the
Cauchy integral theorem,

∫
C
E[Zλ] dλ = E[

∫
C
Zλ dλ] = 0. By Morera’s theo-

rem, E[Zλ] is holomorphic on UM .
By the Cauchy integral formula and Fubini’s theorem, we see that

d

dλ
E[Zλ] =

1

2πi

∫
C

E[Zζ ]

(ζ − λ)2
dζ = E

[
1

2πi

∫
C

Zζ

(ζ − λ)2
dζ

]
= E[Zλ logZ],

where C is a circle with center λ contained in UM . ■

There are several different proofs of this lemma. An alternative way is to use
the integral expression of E[Zλ] obtained from Lemma 2.2. By (2.4), we can also
show the following assertion in the same manner as the above lemma.

LEMMA 4.2. Let λ ∈ U . Let Z be an H-valued random variable. Then the map
α 7→ E[(Z + α)λ] is holomorphic on H, and furthermore

d

dα
E[(Z + α)λ] = λE[(Z + α)λ−1].

Let P(R) be the set of Borel probability measures on R. Let

Fη(α, λ) :=
∫
R
(x+ α)λ η(dx), α, λ ∈ C, η ∈ P(R),

if the integral exists. This is a function of two variables. Hereafter we fix either of
the two variables. Let

F(·,λ) := {Fη(·, λ) : η ∈ P(R)} and F(α,·) := {Fη(α, ·) : η ∈ P(R)}

for λ, α ∈ C. Let the characteristic function of η ∈ P(R) be

φη(t) :=
∫
R
exp(itx) η(dx), t ∈ R.

We remark that for every η ∈ P(R), α ∈ H, and λ ∈ U , the integral Fη(α, λ)
is well-defined. By Lemmas 4.1 and 4.2, all elements of F(·,λ) and F(α,·) are holo-
morphic functions on H and U , respectively.

Let D be a set and F be a class of complex-valued functions on D. We say that
a subset S of D is a determining set of (D,F) if it has the property that if f, g ∈ F
and f(x) = g(x) for every x ∈ S then f(x) = g(x) for every x ∈ D.



144 K. Okamura and Y. Otobe

EXAMPLE 4.3. (i) Let D be a domain and F be the set of holomorphic func-
tions on D. If S is a subset of D which has an accumulating point in D, then S is
a determining set of (D,F), by the identity theorem for holomorphic functions.

(ii) Let D := {z ∈ C : |z| < 1}. For a > 0, let Ha := {z ∈ H : Im(z) > a}
and φa(z) :=

z−(a+1)i
z−(a−1)i , z ∈ Ha. The map φa : Ha → D is bi-holomorphic. Let

(zn)n1 be a sequence in Ha such that
∑∞

n=1(1 − |φa(zn)|) = +∞. This means
that the Blaschke condition fails for (φa(zn))n. For λ ∈ (−∞, 0) and P ∈ P(R),
the map w 7→ FP (φ

−1
a (w), λ) is holomorphic and bounded on D, since a > 0. By

[17, Theorem 15.23], the set {zn}n is a determining set of (Ha,F(·,λ)).
For example, if |φ1(zn)| = 1 − 1/n for each n, then {zn}n is an unbounded

determining set of (H1,F(·,λ)). Since H1 ⊂ H and F(·,λ) is a class of holomorphic
functions on H, by the identity theorem for holomorphic functions, {zn}n is an
unbounded determining set of (H,F(·,λ)).

(iii) Let (λn)n1 be a sequence in U such that
∑

n1 1/(−Re(λn)) = +∞ and
supn1 |Im(λn)| < +∞. Then, by following the proof1 of the Müntz–Szasz theo-
rem in [17, Theorem 15.26], we see that {λn}n1 is a determining set of (U,F(α,·))
for every α ∈ H.

Our motivation for introducing the notion of determining set comes from Ex-
ample 4.3(ii), in which the determining set is a divergent sequence in H. We con-
sider a characterization of distributions.

THEOREM 4.4. Let µ, ν ∈ P(R). Then µ = ν if either of the following two
conditions holds:

(i) There exist a point λ ∈ U and a determining set Dλ of (H,F(·,λ)) such that
Fµ(α, λ) = Fν(α, λ) for every α ∈ Dλ.

(ii) There exist a point α ∈ H and a determining set Dα of (U,F(α,·)) such that
Fµ(α, λ) = Fν(α, λ) for every λ ∈ Dα.

We do not need any moment assumptions for µ and ν. It is, for example, appli-
cable to the Cauchy distributions. This is an extension of [14, Theorem 2.1], which
is specific to the Cauchy distribution. The following proof is completely differ-
ent from the proof of [14, Theorem 2.1], which depends on the Riesz–Markov–
Kakutani theorem.

Proof of Theorem 4.4. Assume that (i) holds. By the assumption and Lem-
ma 4.2, Fµ(α, λ) = Fν(α, λ) for every α ∈ H, in particular on the imaginary axis
in H. By Proposition 2.3,

∞∫
0

t−λ−1φµ(t) exp(−st) dt =
∞∫
0

t−λ−1φν(t) exp(−st) dt, s > 0.

1The Blaschke condition is crucial in it.
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By the inversion formula for the Laplace transform, φµ(t) = φν(t) for t > 0.
Hence, φµ(t) = φν(t) for t ∈ R. By the Lévy inversion formula, µ = ν.

Assume that (ii) holds. The proof is identical to the above one, except for using
the inversion formula for the Mellin transform. By the assumption and Lemma 4.1,
Fµ(α, λ) = Fν(α, λ) for λ ∈ (−∞, 0). By Proposition 2.3,

∞∫
0

t−λ−1φµ(t) exp(iαt) dt =
∞∫
0

t−λ−1φν(t) exp(iαt) dt, λ ∈ (−∞, 0).

We remark that

|(φµ(t)− φν(t)) exp(iαt)| ¬ 2 exp(−t Im(α)).

By the inversion formula for the Mellin transform, φµ(t) = φν(t) for t > 0.
Hence, µ = ν. ■

We next consider the case where Re(λ) > 0. Recall that V = {λ ∈ C :
Re(λ) > 0}. Let VM := {λ ∈ V : Re(λ) < M} for M > 0. We let zλ log z := 0
if z = 0 and λ ∈ V . We can also show the following in the same manner as in the
proof of Lemma 4.1.

LEMMA 4.5. Let Z be a complex-valued random variable. Assume that
E[|Z|M ] < +∞. Then the map λ 7→ E[Zλ] is holomorphic on VM , and fur-
thermore

d

dλ
E[Zλ] = E[Zλ logZ].

There are some differences from Lemma 4.1. In the above assertion, we need to
assume the integrability condition for Z. On the other hand, Z can take real values
with positive probability.

We also have the following assertion which corresponds to Lemma 4.2.

LEMMA 4.6. Let λ ∈ V . Let Z be an H-valued random variable such that
E[|Z|Re(λ)] < +∞. Then the map α 7→ E[(Z + α)λ] is holomorphic on H, and
furthermore

(4.1)
d

dα
E[(Z + α)λ] = λE[(Z + α)λ−1].

The following results deal with the positive moment case. We assume a moment
condition for distributions.

THEOREM 4.7. Let M > 0. Let µ, ν ∈ P(R) be such that∫
R
|x|M µ(dx) +

∫
R
|x|M ν(dx) < +∞.

Then µ = ν if either of the following two conditions holds:
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(i) There exist a point λ ∈ VM and a determining set Dλ of (H,F(·,λ)) such that
Re(λ) /∈ N and Fµ(α, λ) = Fν(α, λ) for every α ∈ Dλ.

(ii) There exist a point α ∈ H and a determining set Dα of (VM ,F(α,·))such that
Fµ(α, λ) = Fν(α, λ) for every λ ∈ Dα.

This is an extension of [14, Theorem 3.1], which was specific to the Cauchy
distribution. By Lemmas 4.5 and 4.6, we can apply Example 4.3 as examples of
determining sets. The following proof is similar to that of Theorem 4.4, but is a
little more involved and rather different from the strategy taken in [14, proof of
Theorem 3.1].

Proof of Theorem 4.7. Assume that (i) holds. By the assumption and Lem-
ma 4.6,

(4.2)
∫
R
(x+ α)λ µ(dx) =

∫
R
(x+ α)λ ν(dx)

for every α ∈ H. Let k be the integer part of Re(λ) and δ = Re(λ) − k. By the
assumption, 0 < Re(δ) < 1. Recall (4.1). By differentiating the two expectations
in (4.2) with respect to α k times, we obtain∫

R
(x+ α)δ µ(dx) =

∫
R
(x+ α)δ ν(dx), α ∈ H.

By Proposition 3.3,

∞∫
0

1− φµ(t) exp(itα)

t1+δ
dt =

∞∫
0

1− φν(t) exp(itα)

t1+δ
dt, α ∈ H.

By differentiating these two integrals with respect to α, we find that

∞∫
0

φµ(t) exp(itα)

tδ
dt =

∞∫
0

φν(t) exp(itα)

tδ
dt, α ∈ H,

in particular on the imaginary axis in H. Hence,

∞∫
0

φµ(t)

tδ
exp(−tx) dt =

∞∫
0

φµ(t)

tδ
exp(−tx) dt, x > 0.

Now by the uniqueness of the Laplace transform, φµ(t) = φν(t) for every t > 0,
and hence µ = ν.

Assume that (ii) holds. By the assumption and Lemma 4.5, we see that Fµ(α, λ)
= Fν(α, λ) for every λ ∈ VM .

By Proposition 3.3,

∞∫
0

1− φµ(t) exp(itα)

t1+δ
dt =

∞∫
0

1− φν(t) exp(itα)

t1+δ
dt
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for every δ ∈ V such that 0 < Re(δ) < min{1,M}. By the inversion formula for
the Mellin transform, φµ(t) = φν(t) for every t > 0. Hence, µ = ν. ■

REMARK 4.8. (i) In condition (i) of Theorem 4.7, we need the assumption that
Re(λ) /∈ N. If λ = Re(λ) = 1, then E[(X+α)λ] = E[X]+α, so even if we move
the value of α, we only know about the value of E[X] and we cannot identify the
distribution of X .

(ii) In condition (ii) of Theorem 4.7, α can be a real number.
(iii) The approach taken in the proof of [14, Theorem 3.1] was similar to that

of [9, Theorem 1]. However, we cannot take these approaches here.

5. APPLICATIONS

In this section, we compute the expectations of the power means of the Cauchy
distribution, the t-distribution whose degree of freedom is 3, and the Poincaré dis-
tribution. We first give an informal and heuristic argument. Let (Zn)n be i.i.d. H-
valued random variables. We will show that there exists a constant β and an inter-
val I such that E[exp(itZ1)] = exp(iβt) for every t ∈ I . Then, by the fractional
derivative or complex analysis, E[Zp

1 ] = βp for every p. By Taylor expansion,
E[exp(itZp

1 )] = exp(iβpt). Finally, by the fractional derivative again, we see that
E
[(

1
n

∑n
j=1 Z

p
j

)1/p]
= β for every n and p. We need some modifications in the

case of Cauchy distributions.

5.1. Cauchy distributions. We deal with the Cauchy distribution with location µ
and scale σ. For µ ∈ R and σ > 0, its probability density function p(x) is given by

p(x) =
σ

π

1

(x− µ)2 + σ2
, x ∈ R.

Let γ := µ+ σi.

THEOREM 5.1 ([1, Theorem 7.1]). Let α ∈ H and −1 ¬ p < 0. Let n  2.
Let X1, . . . , Xn be i.i.d. random variables following the Cauchy distribution with
location µ and scale σ. Then

E

[(
1

n

n∑
j=1

(Xj + α)p
)1/p]

= γ + α.

In [1], this assertion is shown by repeated use of the Cauchy integral formula.
Here, by Corollary 2.7, we can naturally anticipate that the assertion holds. How-
ever, we cannot apply Corollary 2.7 directly, because (p − 1)/(np) < 1 fails for
some n.

Proof of Theorem 5.1. Let Z := 1
n

∑n
j=1(Xj+α)p. Let PM := P (·|X1 ¬M)

for M > 0. We remark that Im((x+ α)p) ¬ 0 for every x ∈ R. Then there exists
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a positive constant cM such that if X1 ¬M then

Im(Z) ¬ Im((X1 + α)p)

n
¬ −cM < 0.

Therefore we can apply Lemma 2.2(ii) to obtain

∂1/p

∂t1/p
EM [exp(itZ)]

∣∣∣∣
t=0

= i−1/pEM [Z1/p],

where EM is the expectation with respect to PM . This means that

(5.1)
1

Γ(−1/p)

∞∫
0

t−1/p−1EM [exp(−itZ)] dt = i−1/pEM [Z1/p].

By the Lebesgue convergence theorem,

(5.2) lim
M→+∞

EM [Z1/p] = E[Z1/p],

and

(5.3) lim
M→+∞

EM

[
exp

(
i
t

n
(X1 + α)p

)]
= E

[
exp

(
i
t

n
(X1 + α)p

)]
.

By the Cauchy integral formula2, for every t ¬ 0,

E[exp(it(X1 + α)p)] = E[exp(itZ)] = exp(it(γ + α)p).

From this, (5.3) and

EM [exp(itZ)] = exp

(
i
n− 1

n
t(γ + α)p

)
EM

[
exp

(
i
t

n
(X1 + α)p

)]
,

we see that

(5.4) lim
M→+∞

EM [exp(itZ)] = exp(it(γ + α)p).

Since
∣∣EM

[
exp

(
i tn(X1 + α)p

)]∣∣ ¬ 1, we find that

|u−1/p−1EM [exp(−itZ)]| ¬ t−1/p−1 exp(t sin(pθ0)),

where arg(γ + α) = θ0 ∈ (0, π).

2As an alternative proof, we can also show the equality by using Taylor expansion; see the
proof of Theorem 5.4 below. The alternative proof uses E[(X1 + α)r] = (γ + α)r for every r < 0.
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In view of this and (5.4), we can apply the Lebesgue convergence theorem to
obtain

(5.5) lim
M→∞

∞∫
0

t−1/p−1EM [exp(−itZ)] dt =
∞∫
0

t−1/p−1 exp(−it(γ + α)p) dt.

By (2.2),

(5.6)
∞∫
0

t−1/p−1 exp(−it(γ + α)p) dt = (γ + α)i−1/pΓ

(
−1
p

)
.

By (5.1), (5.2), (5.5) and (5.6), we get the assertion. ■

REMARK 5.2. (i) Let φ be the characteristic function of X1. Then φ(t) =
exp(iγt) for every t  0. By Lemma 2.2(i), we have E[(X1 + α)p]1/p = γ + α
for p ∈ (−1, 0) and α ∈ H. This is an alternative derivation of [1, (6.1)].

(ii) The positive power mean is more difficult since X1 /∈ L1. [8, Theorem
2.2 (a)] does not hold for an H-valued random variable Z = 1

n

∑n
j=1(Xj+α)p. Let

p>1. Assume that p /∈N. Let k be the integer part of 1/p. Then (
∑n

j=1(Xj+α)p)k

∈ L1, and

∂1/p

∂t1/p
E[exp(−itZ)]

∣∣∣∣
t=0

=
∂1/p

∂t1/p
exp(−it(γ + α)p)

∣∣∣∣
t=0

= (−i)1/p(γ + α).

However, (
∑n

j=1(Xj + α)p)1/p /∈ L1.

5.2. t-distributions. We consider the location-scale family of a slightly modified
t-distribution whose degree of freedom is 3. Let f(x) := 2

π (1 + x2)−2 for x ∈ R.
Let µ ∈ R and σ > 0. Let γ := µ+ σi. Let

p(x) :=
1

σ
f

(
x− µ

σ

)
=

2σ3

π

1

|x− γ|4
, x ∈ R.

Let X1, X2, . . . be i.i.d. random variables such that X1 has density function p(x).
Let α ∈ H and p < 0.

Since we can argue in the same manner as in the case of Cauchy distributions,
we only give a sketch. By the Cauchy integral formula,

E[(X1 + α)p] = (γ + α)p−1(γ + α− ipσ)

and

E[exp(it(X1 + α)p)] = (1 + pσ(γ + α)p−1t) exp(i(γ + α)pt), t  0.

As before, let Z := 1
n

∑n
j=1(Xj + α)p. Then

E[exp(itZ)] =
n∑

k=0

(
n

k

)(
p(γ + α)p−1

n

)k

tk exp(i(γ + α)pt).
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From this and (2.2),

∞∫
0

t−1/p−1E[exp(itZ)]dt = i−1/p
n∑

k=0

(
n

k

)(
ip

n(γ + α)

)k

Γ

(
k − 1

p

)
.

Thus we see that

(5.7) E

[(
1

n

n∑
j=1

(Xj + α)p
)1/p]
=

γ + α

Γ(−1/p)
n∑

k=0

(
n

k

)(
ip

n(γ + α)

)k

Γ

(
k − 1

p

)
.

Since pkΓ(k−1/p)
Γ(−1/p) =

∏k−1
j=0(jp− 1), the right hand side of (5.7) is a polynomial

in p of degree n − 1 with complex coefficients. The coefficient of the highest
degree is (n−1)!in

nn(γ+α)n−1 . Hence, E
[(

1
n

∑n
j=1(Xj+α)p

)1/p] is not a constant function
with respect to p. The same arguments apply to the t-distribution whose degree of
freedom is an odd number, but the expression of the expectation would be more
complicated.

5.3. Poincaré distributions. The probability density function of a Poincaré distri-
bution with a parameter θ = (a, b, c) is given by

pθ(x, y) :=
D exp(2D)

π
exp

(
−a(x

2 + y2) + 2bx+ c

y

)
1

y2
, x ∈ R, y > 0,

where θ belongs to the parameter space Θ := {(a, b, c) ∈ R3 : a > 0, c > 0,
ac− b2 > 0 and we let D :=

√
ac− b2.

This is the upper half-plane realization of two-dimensional hyperboloid distri-
butions and was introduced by [18]. The family is compatible with the Poincaré
metric on H. Properties of the Poincaré distribution have also been investigated in
[19, 13].

PROPOSITION 5.3. Let Z be an H-valued random variable following a
Poincaré distribution with a parameter (a, b, c) ∈ Θ. Then

E[exp(itZ)] = exp

(
−i b

a
t− D

a
t

)
for t  0.

Proof. We have E[exp(itZ)] =
∫
H exp(itx − ty)pθ(x, y) dx dy. We first cal-

culate the integral with respect to x and we obtain∫
R
exp(itx) exp

(
−a(x

2 + y2) + 2bx+ c

y

)
dx

=

√
πy

a
exp

(
−i b

a
t−

(
a+

t2

4a

)
y − D2

ay

)
.



Power means of random variables 151

We then integrate the above function with respect to y to find that

∞∫
0

1

y3/2
exp

(
−(t+ 2a)2

4a
y − D2

ay

)
dy =

√
πa

D
exp

(
−D(t+ 2a)

a

)
.

The assertion follows from this. ■

THEOREM 5.4. Let n  2. Let Z1, . . . , Zn be i.i.d. H-valued random vari-
ables following a Poincaré distribution with a parameter (a, b, c) ∈ Θ. Then the
following hold:

(i) For every p with p ̸= 0,

(5.8) E[Zp
1 ] =

(
− b

a
+

D

a
i

)p

.

(ii) E[exp(t|Z1|p)] < +∞ for every t > 0 and p with 0 < |p| < 1.

(iii) For every p with 0 < |p| ¬ 1,

(5.9) E

[(
1

n

n∑
j=1

Zp
j

)1/p]
= − b

a
+

D

a
i.

For ease of notation, we let

I(a, b, c) :=
∫
H
exp

(
−a(x

2 + y2) + 2bx+ c

y

)
1

y2
dx dy, θ = (a, b, c) ∈ Θ.

We show these assertions by dividing into cases according to the sign of p.

Proof for p < 0. (i) We will show that E[Im(Z1)
−λ] < +∞ for every λ > 0.

We see that

E[Im(Z1)
−λ] ¬ D exp(2D)

π

∫
H

1

y2+λ
exp

(
−a(x

2 + y2) + 2bx+ c

y

)
dx dy

< +∞,

because supy>0 y
−2−λ exp(−ε/y) < +∞ for every ε > 0, and I(a, b, c − ε) <

+∞ for sufficiently small ε > 0.
Therefore we can apply Lemma 2.2(i). By recalling Proposition 5.3 and (2.2),

we get (5.8).
(ii) For every t > 0,

E[exp(t|Z1|p)] ¬ E[exp(t Im(Z1)
p)]

=
D exp(2D)

π

∫
H

exp(typ)

y2
exp

(
−a(x

2 + y2) + 2bx+ c

y

)
dx dy < +∞,
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because supy>0 exp(ty
p − ε/y) < +∞ for every ε > 0, and I(a, b, c− ε) < +∞

for sufficiently small ε > 0.
(iii) For n ∈ N and p ∈ [−1, 1], we have3 znp = (zp)n for every z ∈ C. By

Taylor expansion, (i) and (ii), we see that for every u  0,

(5.10) E[exp(iuZp
1 )] =

∞∑
k=0

(iu)kE[Zpk
1 ]

k!
=
∞∑
k=0

(iu)k
(
− b

a + D
a i
)pk

k!

= exp

(
iu

(
− b

a
+

D

a
i

)p)
.

We remark that∫
H

(x2 + y2)(1−1/p)/2

y2−1/p
exp

(
−a(x

2 + y2) + 2bx+ c

y

)
dx dy < +∞,

because for every ε > 0 we have supx+iy∈H(x
2 + y2)(1−1/p)/2 exp

(
−εx

2+y2

y

)
< +∞ and supy>0 y

1/p exp
(
−ε/y

)
< +∞, and for sufficiently small ε > 0,

I(a − ε, b, c − ε) < +∞. Hence, E[Im(Z1)
1/p|Z1|1−1/p] < +∞. Let Z :=

1
n

∑n
j=1 Z

p
j . By Theorem 2.5, we see that

∂1/p

∂t1/p
E

[
exp

(
i
t

n
Zp
1

)]n∣∣∣∣
t=0

= i−1/pE[Z1/p].

By (5.10),

E

[
exp

(
i
t

n
Zp
1

)]n
= exp

(
it

(
− b

a
+

D

a
i

)p)
.

From this and (2.2), we deduce (5.9). ■

Proof for p > 0. We first show

LEMMA 5.5. E[exp(t|Z1|)] < +∞ for sufficiently small t > 0.

Proof. Let ε > 0 be such that I(a− ε, b, c) < +∞. Then

E

[
exp

(
ε

2
|Z1|

)]
¬ D exp(2D)

π
I(a− ε, b, c) < +∞,

because supx+yi∈H exp
(
ε
2

√
x2 + y2 − εx

2+y2

y

)
¬ 1. ■

(i) If p is an integer, then we have (5.8) by Proposition 5.3 and Lemma 5.5.
Assume that p is not an integer. By Lemma 5.5, E[Im(Z1)

p] ¬ E[|Z1|p] < +∞.
Therefore we can apply Lemma 3.2(i) to obtain

∂p

∂tp
E[exp(−itZ1)]

∣∣∣∣
t=0

= (−i)pE[Zp
1 ].

From this, Proposition 5.3, and (2.2), we get (5.8).

3However, it is not true that znp = (zn)p.
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(ii) follows from Lemma 5.5.
(iii) The case of p = 1 is easy. Assume that 0 < p < 1. Let Z := 1

n

∑n
j=1 Z

p
j .

By Taylor expansion, (i) and (ii), we see that for every u  0,

(5.11) E[exp(iuZp
1 )] =

∞∑
k=0

(iu)kE[Zpk
1 ]

k!
= exp

(
iu

(
− b

a
+

D

a
i

)p)
.

By Hölder’s inequality,

E[Im(Z)1/p] ¬ E[|Z|1/p] ¬ E

[(
1

n

n∑
j=1

|Zj |p
)1/p]

¬ E

[
1

n

n∑
j=1

|Zj |
]

= E[|Z1|] < +∞.

Therefore we can apply Theorem 3.4 to obtain

∂1/p

∂t1/p
E

[
exp

(
−i t

n
Zp
1

)]n∣∣∣∣
t=0

= (−i)pE[Z1/p].

By (5.11),

E

[
exp

(
−i t

n
Zp
1

)]n
= exp

(
−it

(
− b

a
+

D

a
i

)p)
.

From this and (3.1), we get (5.9). ■

REMARK 5.6. (i) The case p = 0 corresponds to the geometric mean
E[Z

1/n
1 ]n, and the value is − b

a + D
a i by (5.8).

(ii) Assume that Z and W are H-valued. It can happen that E[exp(itZ)] =
E[exp(itW )] for every t  0, but the distributions of Z and W are different, as in
the above case. If E[exp(itZ)] = E[exp(itW )] for every t  0, then, by Lemmas
2.2(i) and 3.2(i), E[Zp] = E[W p] for every p ∈ R.

(iii) Numerical computations show that (5.9) fails if |p| > 1.

6. APPENDIX: COMPARISON WITH FRACTIONAL ABSOLUTE MOMENTS

It is natural to compare the fractional absolute moment E[|Zp|] = E[|Z|p] with
the absolute value of the fractional moment |E[Zp]| for p ∈ R.

PROPOSITION 6.1. Assume that p is a real number with |p| ¬ 1. Let Z be an
H-valued random variable or a −H-valued random variable. Then

(6.1) E[|Z|p] ¬ |E[Zp]|
cos(pπ/2)

.
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Proof. The case p ∈ {0,±1} is easy. Assume that Z is H-valued and 0 <
p < 1; the other cases are shown in the same manner.

Let n  1 and Z1, . . . , Zn be i.i.d. copies of Z. Let ξi := Zi/|Zi| if Zi ̸= 0
and ξi := 1 if Zi = 0. Let si := |Zi|/

∑n
i=1 |Zi| if

∑n
i=1 |Zi| > 0 and si := 1/n

if
∑n

i=1 |Zi| = 0. Then

n∑
i=1

Zp
i =

( n∑
i=1

|Zi|p
)( n∑

i=1

siξ
p
i

)
.

We remark that
∑n

i=1 siξ
p
i is in the convex hull of {ξpi }ni=1 and the convex hull is

contained in the region surrounded by the arc {exp(iθ) : 0 ¬ θ ¬ pπ} and the line
segment connecting 1 and (−1)p = exp(ipπ). Hence, |

∑n
i=1 siξ

p
i |  cos(pπ/2)

and |
∑n

i=1 Z
p
i |  (

∑n
i=1 |Zi|p) cos(pπ/2). Now the assertion follows from the

law of large numbers. ■

In the same manner, we show

PROPOSITION 6.2. Assume that p is a real number with |p| < 1/2. Let Z be a
complex-valued random variable. Then

E[|Z|p] ¬ |E[Zp]|
cos(pπ)

.

REMARK 6.3. (i) If |p| ¬ 1 and P (Z = 1) = P (Z = −1) = 1/2, then
E[|Z|p] = 1 and |E[Zp]| = |1+(−1)p|/2 = cos(pπ/2). Hence the bound in (6.1)
is sharp in general.

(ii) If 1/2 < p ¬ 1 and P (Z = 1) = P (Z = exp(i(1 − 1/p)π)) = 1/2, then
E[Zp] = 0 and E[|Z|p] = 1. The case −1 ¬ p < 1/2 is the same.

We give an application of Proposition 6.1. Let (Zn)n be H-valued i.i.d. random
variables such that Z1 ∈ Lp for some p > 0. Let ℓ ∈ N be such that Z1 ∈ L1/ℓ.
Let Yj := Z

1/(j+ℓ)
j /E[Z

1/(j+ℓ)
j ] for j  1, and Mn :=

∏n
j=1 Yj for n  1. Let

Fn := σ(Z1, . . . , Zn). Then (Mn,Fn)n is a martingale. By (6.1),

sup
n1

E[|Zn|] ¬
∞∏
j=1

1

cos
(
π
2 (j + ℓ)

) ¬ C
∞∑
j=1

1

(j + ℓ)2
< +∞.

By the martingale convergence theorem [20, Chapter 11], (Zn)n converges almost
surely as n→∞. By Kronecker’s lemma,

n∏
j=1

Z
1/n
j

E[Z
1/(j+ℓ)
j ](j+ℓ)/n

→ 1 a.s. as n→∞.
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Since Z1 ∈ L1/ℓ, we get
n∏

j=1

Z
1/n
j → exp(E[logZ1]) a.s. as n→∞.

This gives a martingale proof of the strong law of large numbers for the geometric
means.
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