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Abstract. In this paper, we derive the asymptotic distributions for the max-
ima of two types of Gaussian functions, including a x-random sequence and
a Gaussian order statistics sequence subject to missing observations, where
the Gaussian functions are generated by stationary Gaussian sequences with
covariance functions r,, satistying r,, logn — v € [0, 00) as n — 0.
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1. INTRODUCTION

Let {X,,, n > 1} be a sequence of independent and identically distributed random
variables, and let M, (X) = max {X; : 1 < j < n}. Suppose there exist constants
cn > 0,d, € R;n > 1, and a non-degenerate distribution G(z) such that

(1.1) nh—»Holo P(cn (M, —dy) < z) = G(z).

Then GG must be one of three types of extreme value distributions (see, e.g., Lead-
better et al. [[16] and Piterbarg [25]]). The dependent case of the above classical
result can also be found in these monographs.

Missing observations may occur randomly in practical applications, but the
model (L.T)) cannot be applied directly in such situations. In extreme value theory, it
is important to investigate the asymptotic relation between the maxima of complete
samples and incomplete samples. Consider a sequence { X,,, n > 1} of stationary
random variables, and let {e,,, n > 1} denote a sequence of Bernoulli random vari-
ables indicating whether the variables {X,,, n > 1} are observed. Furthermore,
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n

suppose that {€,, n > 1} is independent of {X,,, n > 1}. Let S, = > " | &
satisfy
S,
(1.2) 2 PoN asn— oo,
n
where A is a random or non-random variable.

If \ is a constant, under a type of long dependence condition D(uy,, vy,) (see
[21] for the definition) and a local dependence condition D’(u,,) (see [16] for the
definition), Mladenovié and Piterbarg [21] first derived the following result for all
real z < y:

(13)  lim P(My(X,€) < On(x), Ma(X) < Un(y)) = GH2) G (y),
where M, (X,e) = max{X; : 1 < j < n,¢e; = 1} denotes the maxima of
samples observed and 9,,(z) = ¢, 'z + d,,.

Peng et al. [23] and Cao and Peng [4] extended the above result to Gaussian
cases. Tong and Peng [35] and Tan and Wang [34] considered the almost sure
version of complete maxima and incomplete maxima, while Glavas et al. [10]
and Glava$ and Mladenovi¢ [9] studied similar problems for autoregressive pro-
cesses and linear processes, respectively. Some related studies including the cases
of maxima and minima, sums and maxima, non-stationary random fields and ex-
ceedance point processes can be found in Hashorva and Weng [12], Krajka and
Rychlik [15], Panga and Pereira [22]], Peng et al. [24], Li and Tan [17]] and Zheng
and Tan [39]]. Some similar studies for continuous time stochastic processes can be
found in Piterbarg [26], Tan and Tang [33]], Xu et al. [37], Ling et al. [[19], Lu and
Peng [20] and the references therein.

When A is a random variable, under the same conditions of D(uy,v,) and
D’(uy,), Krajka [14] obtained the following result for any z < y € R:

(14)  lim P(M(X,€) < 9n(2), Ma(X) < 9a(y)) = E(CM(2)G' ().
Note that the condition D (u,,, v,,) is weakly dependent and indicates that the
complete maxima and the incomplete maxima are asymptotic independent condi-
tional on A. Since the strongly dependent phenomenon is very common in finan-
cial time series (see, e.g., Baillie and Kapetanios [3])), it is interesting to study the
model in the strongly dependent setting. Hashorva et al. [11]] extended
to strongly dependent Gaussian sequences and found that asymptotic conditional
independence is destroyed by strong dependence. A naturally arising problem is
whether the asymptotic conditional independence between complete maxima and
incomplete maxima can be preserved for strongly dependent non-Gaussian random
sequences.

In this paper, we extend the model to some non-Gaussian strongly de-
pendent random sequences. In what follows, {X,,, n > 1} will be a sequence
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of stationary standard Gaussian random variables with covariance functions r,, =
Cov(X1, X,,41) satisfying

(1.5) rplogn — v € [0,4+00) asn — oo.

The Gaussian sequence {X,,, n > 1} is said to be strongly dependent when
holds with v > 0 (see, e.g., Leadbetter et al. [16, Chapter 5]). Let {X;;, j > 1,
i=1,...,d},d > 1, be independent copies of {X,,, n > 1}. Define two types of
Gaussian functions generated by the Gaussian sequence:

d 1/2
(1.6) (0 = (L XE) iz,
i=1

and forr € {1,...,d},

Ogl;l)(X) :rln:j{lXij << Oc(l;)(X) << Oéjl-)(X) :I?Eif(Xij,j S 1

Note that the sequences {xg4;(X), j > 1} and {Oc(g) (X), j > 1} are a x-random
sequence and a Gaussian rth order statistics sequence, respectively, and both are
strongly dependent when (I.5) holds with v > 0. The x-random sequence has been
extensively studied in theoretical fields (see, e.g., Sharpe [27], Tan and Hashorva
[311132]], Sun and Tan [29]), and in applied fields (see, e.g., Albin and Jaruskova [[1]],
Chareka et al. [5], JaruSkov4 and Piterbarg [[13]]). The Gaussian rth order statistics
random variables play an important role in many applied fields such as in models
concerned with the analysis of surface roughness during machinery processes and
functional magnetic resonance imaging data. For related studies on Gaussian rth
order statistics, we refer to Alodat [2]], Debicki et al. [6L (7, (8], Worsley and Friston
[36]], Zhao [38]] and the references therein.

The studies on the asymptotic relation between the maxima of complete
samples and incomplete samples are far from complete. In this paper, we extend the
model (I.4) to a stationary x-random sequence and a Gaussian rth order statistics
sequence with missing observations when holds with A a random variable.
Section 2 gives the main results and their proofs appear in Section 3.

2. MAIN RESULTS

Now we state our main results. The first result is about the asymptotic distribution
for the maxima of y-random sequences with missing observations.

THEOREM 2.1. Let {X,,, n > 1} be a sequence of stationary Gaussian vari-
ables with covariance functions v, satisfying and {xgn(X),n > 1} be a
sequence defined as in (1.6). Assume that {e,, n > 1} is a sequence of indica-
tors which is independent of {xqn(X),n > 1} and such that (1.2) holds with X
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a random variable. If moreover

| log (221 (d/2) 'l ?)

an

2.1) an = (2logn)'?, by =a,

)

then for any real x < y,

22)  lim P(My(xa(X),€) < un(2), My(xa(X)) < un(y))

n—oo

- E(f exp(—Ae~ @Vl _ (1 _ ))e=(rr=vElzl)) dq)(z)>7
Rd

where T'(-) is the Euler gamma function,

1
V2T

e /2 dt,

O(x) = j

z=1(z1,...,2q), ||z = \/22 4+ -+ 22, un(x) = a, 'z + by, and d®(z) stands

for d®(z1) -+ d®(zq) for simplicity.

REMARK 2.1. (i) The weakly dependent case v = 0 has been proved by Zheng
and Tan [39, Theorem 3.2]; the case v > 0 is strongly dependent.

(i1) A similar study for continuous time y-processes can be found in Ling and
Tan [18]].

For the maxima of Gaussian order statistics random variables with missing ob-
servations, we have the following result.

THEOREM 2.2. Let {X,,, n > 1} be a sequence of stationary Gaussian vari-
ables with covariance functions r,, satisfying li and {Og;l) (X),n > 1} be a
sequence defined as in (L7). Assume that {e,, n > 1} is a sequence of indica-
tors which is independent of {O((;;L) (X), n > 1} and such that (1.2) holds with A

a random variable. If moreover

1 logdm —1 log1
12, Bn:ﬂln_r(ogw ogr + loglogn)

2.3) apn, = (2rlogn) . S,

Y

then for any real x < vy,

24)  lim P(M,(0"(X),e) < vn(x), Ma(OV (X)) < vn(y))

n—oo
d d
_ E( I exp(—/\ > e~ @HI=VITE) (1)) > e*@ﬂ#ﬂzﬁ) dcp(z))

R4 1=
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and

25)  lim P(M,(0(X),e) < vn(z), My(OS(X)) < va(y))

(fexp( —(z+y—v272) _ (1—Ne —(y+7— WZ)) dd(z ))

where v, () = oy 'z + B, andz = % 2?21 Zj.

REMARK 2.2. (i) The case v = 0 has been proved by Zheng and Tan [39,
Theorem 3.3].

(ii) Note that the cases r € {2,3,...,d — 1} are not covered by our method,
since the transformations and below are only valid for r = 1, d.

(iii) A similar study for continuous time Gaussian order statistics processes can
be found in Tan [30], where there are some mistakes in the strongly dependent
case, but they can be rectified by the method of the present paper.

3. PROOFS OF THE MAIN RESULTS

Let Yj;,U; be ii.d. N(0,1) random variables, where j > 1,4 = 1,...,d with an
integer d > 1. Let p,, = «y/logn and define

(3.1) Zij= (1= p) Yy + p)?Us,  j>1,i=1,....d.

It is easy to see that the covariance function of {Z;;, j > 1,i=1,...,d}is

Pns  E=1,

Cov(Zij, Zix) = {0 .y

Define y-random sequences and rth order statistics sequences generated by the
random sequences {Y;;, j > 1,7 =1,...,d} as follows:

d 1/2
(3.2) (V)= (X¥3) . iz
=1

and forr € {1,...,d},
(3.3)

(d) d (r) (1) d .
Oy (V) =minY; <+ <O (Y) < ++- < Oy (V) = max ¥y, j > 1.

Similarly, we can define random sequences {x4;(Z), j>1} and {Oé (Z), 5>1}.
s

For fixed k, let Ks = {j : (s —1)m+1 < j < sm} for 1 < s < k, where
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m = [n/k] denotes the integer part of n/k. Let @ = {6,,, n > 1} be a non-random
sequence taking values in {0, 1}. For any random sequence {X,,, n > 1}, let

max X, if i 0: >0,
M, (X, Ks, 0) = < 7:7€Ks,0;=1 J ZJEKS J
—00 otherwise,

and

max X, if " 6:>0
Mo(X,0) = { i1<i<n,0,=1" " 252105 0
—00 otherwise.

Further, for a random variable X such that 0 < A < 1 a.s., set

] [0,1/2"), t=0,
Bt’k_{w'A(w)E{(t/Q’“,(t+1)/2’ﬂ, 0<t<2k’1}’

and define
Bigon={w:ej(w) =0;,1<j<n}NBy.
In the following, C' will denote a constant whose values may change from line to

line, and 1(-) will stand for the indicator function.
To prove Theorems 2.1 and 2.2, we first prove the following lemmas.

LEMMA 3.1. Suppose that the conditions of Theorem 2.1 are satisfied. Assume
that, for large n, the positive integers | are such that k < | < m = [n/k] and
[ = o(n). Then, for any real x < y,

)P(Mn(Xd(Y),O) < (l'), Mn(Xd(Y)) < un(y))

k
= 1L P(Ma(xa(V), K5,0) < (), Ma(xa(Y), ;) < a(y))|

< (4k +2)I(1 — Fy(un(2)))

uniformly for all @ € {0,1}", where F\(-) denotes the distribution function of a
x-random variable with d degrees of freedom.

Proof. The proof is similar to that in Hashorva et al. [11, Lemma 1], so it is
omitted. m

LEMMA 3.2 Suppose that the conditions of Theorem 2.2 are satisfied. Assume
that, for large n, the positive integers | are such that k < | < m = [n/k| and
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I = o(n). Let v, (z, z;) = (1 — pp) =2 (v, (z) — ,03/27:7;) with z; € R and define

n d
ﬂ ﬂ{Y;J = ‘T Zl)} n nl ml{Y;] < vn(y7zi)}7 r=1,
j=li=
Ar = <J<n d n d
{ Yy <onle, 20 p 0 {0 UV <wly. 20t} r=d.
J:05=1 =1 j=1li=1
1<j<n
and
ﬂ ﬂ{ym (z,2)}0N ﬂ ﬂ{YU Un (Y, i)} r=1,
J:0;=1 j= JEK i=
BT’K - JEKS
in U{Yw (.20} N U{YU vy, )}, r=d.
J:05=14=1 JEKs i=
JGKS

Then, for all real x < y, we have

(3.4) ’P(AT) — ﬁ P(B,.x.)

s=1
. {(4k+2)zzf:1(1 — D(vp(z,2))), r=1,
(4k + 2], (1 = B(vn(z, ), r=d,

uniformly for all 6 € {0,1}™.

Proof. First we divide the km integers into 2k consecutive intervals as follows.
For large n, let [ be integers such that ¥ < | < m and [ = o(n). Write I, =
{(s=1)m+1,...;sm—1}and Js = {sm —1+1,...,sm}fors =1,... k,
andset [y ={(k—1)m+1+1,...,km}and Jp11 = {km+1,... . km+1}.
For r = 1, using the triangular inequality, we get

Pl - 11 P(Bik)

d n d

=[P( N A <oz () O <l 20))
Jl g =1 Jj=1li=1
k d
fHP(ﬂ ‘ﬂ{}/ij<v(ﬂf Zl}ﬁ ﬂ ﬂ{}/;j\ yvzl)}))
s=1 J:05=1 i=1 JEKsi=

where
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d n d
si=[P( N Y < valw20b0 () (Y < valy, 2)})
1:9?_: i=1 j=1i=1
) k d
-P(N{ N N <ol z0)n N nm < oaly, 24} ) |,
s=1 j:ejl—lz 1 je€lsi=
k
m=P(N{ N mm] <o, z)} 0 N mm on(y,20)}})
s=1 11_963'[;1% jelsi=
k d
-11P( N Ny <valez)bn N m% vy, 700} ) |
s=1 jt?;l =1 j€ls i=
k d
Y3 = H ( ﬂ ﬂ{wa wzz}ﬁﬂ D{YM\ y,zﬂ})
s=1 J_i][:lz 1 j€ls 1=
lk d
—1IP( N MYy <ol z)in ) mym ualy, 2}
s=1 j::]kfslz 1 JEK i=
Since
k d
N{ N N <wal@zin N ﬂ% oaly: i)}
s=1 jtﬂejzl i=1 j€lsi=1
d n d
- ﬂl{}/ij < Un(xvzi)} N ﬂl nl{)/l < Un(ya Zz)}
50521 i= j=li=
k+1 \]\d d
cU{ U Uly>u=30 U Uiy > ez},
s=1 j:ijjisl i=1 j€Js i=1
it follows that
3.5
k+1 d d
si<P(U{ U U > ztu U Uiy > oo, )} })
s=1 j:_ZjJil i=1 Jje€Jsi=1
k+1
<23 P( U U{ > on(e, )} )
s=1 jE€Js i=
k+1 d
<20 > (1= @(va(z, 2)))
s=11i=1
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Since {Y;;, j > 1,1 = 1,...,d} is a sequence of independent standard normal
random variables, we obtain

(3.6) ¥ =0.

By using the fact that

k k
(3.7) [T as— I10bs| <> las— b
s=1 s=1 s=1
for all as, bs € [0, 1], we get
(3.8)
k d
&<ZPUWHM%U@Mﬂﬂﬂmp‘%mD
s=1 §:0;=1i=1 JEL i=

-P( N ﬂ%\ @2k () (Y <vely )|

J:0;=1 j= JjEKsi=1

JEK.s

QZZZI— (vn(, 27)) —Zkl21— (vn(, 2;))).
s=1i=

Combining (3.5)), (3.6) with (3.8), the case r = 1 of (3.4) follows.

The proof for » = d is similar, hence we omit it. m

LEMMA 3.3. Under the conditions of Theorem 2.1, for any real x <y we have
[P (Mo (a(X),0) < un(@), Ma(xa(X)) < un(y)
= [ P(Mu(xal(Y), 0) < (@, 12]), Ma(xa(Y)) < un(y, 2])) d®(2)|
R4

1k — pn (un (@)un (y)) 4! uz () + uz (y)
Cd? (1= w?)i72d “%‘2u+%>>

where u (x, ||z])) = (1 = pn)~2(un(2) — pi/*||2]]) and wy, = max(|rg, |pn])

Proof. By using the comparison inequality for y-variables (see, e.g., Song et
al. 28, Lemma 3.2]), we get

(3.9 |P(Mn(xa(X),0) < un(z), My(xa(X)) < un(y))
- P(M (Xd(Z)70) < Un(m)v Mn(Xd(Z)) < Un(y))}

i — pal (n@un (@)™ (w2 (x) +2()
<ond 3 =R 2172 “%‘2a+%>>
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Define a Gaussian random field by
Z(j,l/) = leI/l + ZQjVQ —+ -+ Zdjvd, j =1
with
v=(v1,...,Vq) € Sq_1,
where Sy_; stands for the unit sphere in R¢ and the sequences {Zij, j > 1,
i=1,...,d} are defined in . We have (see, e.g., Piterbarg [25]])

d 1/2 d .
(2) = (L 22) 7 = sw Zyuy = sw Y Zgy, 31
=1

veSy_1 veESg_1i=1

Hence
(3.10)  P(My,(xa(Z),8) < un(x), My(xa(2)) < un(y))

d

= P( max S (1= pn)2Y55 + 02U vi < un(2),
(Gw)elln]xSq_1 ;7

j:9j:1 d

max 1—p, 1/2yZ + 1/2U w
(j,V)G[l,n]de,lizzl(( pu) Yo + ol “Us)vi (y)>

d d
= P( ﬂ {Z Yijvi < (1I—ppn) 1/2 (un(:x) - Prlz/z 1:21 Uiyi)}

(J,v)E[1,n]xSg_1 1=1

J: Oj_l
d 1/2 1/2 d
NN S Y < p) ) - o Y ) })
(4,»)E[1,n]xSq—y “i=1 i=1
d d
= fP( {Z Yijvi < (1 —Pn)*l/Q(un(w) —P}/QZ%W)}
Rd (Gw)€Eln]xSy_q ~i=1 =1
j:Gj:l

TN Y ) ) 25 ) ) dta

(j:l’)e[lzn]XSdfl i=1

= [ P(Mn(xa(Y),0) < un(z, ||z])), Mn(xa(Y)) < un(y, ||2l)) d®(2).
Rd

Plugging (3.10) into (3.9), we complete the proof of Lemma 3.3. m

LEMMA 3.4. Under the conditions of Theorem 2.2, we have, for r = 1,d and
any real x < vy,

‘p(Mn(oC(l”(X),a)@n(x%Mn(Of])( )) < vn(y)) — fP \

7 — _r( v2(x) + 02 (y))
s Cnd Z ' (On (@) ()7 eXp( 2(1+ wy) )

where A, is defined in Lemma 3.2 and wy, = max(|r|, |pn|)-




Asymptotic distribution of maxima 11

Proof. By using the comparison inequality for order statistics variables (see
e.g. Song et al. [28, Lemma 3.2]), we get

G.11)  [P(Mn(05(X),8) < vn(x), Ma(O (X)) < va(y))
(
)

=1 (Un(@)on(y)) !

For r = 1, we have

< Cnd Z 7% — pnl eXp(_T(WQL(x) + v%(y))>, r=1,d.

3.12)  P(M,(01(2),6) < va(x), Ma(0$(2)) < va(y))

= P( max max Z;; < vp(x), max max Zj; < vn(y)>
J
1

= P( max max{(l - pn)I/QYZ] + p U3} < on(2),

_ 1/2 12171 < )
ﬁ%&&%ﬂlfm Yok U ey

d
=p( N O <w@U}n N ﬂ{Yw (3, U)})

j:0;=1i=1 1<jgni=
1<y

d
= P( Y <wvn(z,z)}n () m{Yw S ?J?ZZ)}> d®(z).

R4 J:0;=14=1 1<jgni=1
1

(3.13) P(Mn<0§d)(2>,0> < wn(2), Ma(05(2)) < va(y))
d

= /(N Ot <mmtezn 0 U0 < o)) dota)
]1<9g<_7111 1<j<ni=1

Recall the definition of A, in Lemma 3.2. Combining (3.12)) with (3.13), we get

(3.14)  P(M,(0Y)(2),0) < va(x), Ma(O)(2)) < va(y))

= [ P(A,)d®(z), r=1,d.
R4

Plugging (3.14)) into (3.11)) completes the proof of Lemma 3.4. =

LEMMA 3.5. Under the conditions of Theorem 2.1, we have, as n — o0,

i — ool (un (2)un (y)) up () + up (y)
Cn dk; (1—w?)i/d exp<_ 2(1 + wy) >_’0’

where wi, = max(|rg|, |pnl).-
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Proof. From (2.1)), it is easy to see that for any = € R,

2 —(d-2)
(3.15) exp (_u,ém)) ~ C(un(a:T)L) . up(x) ~ (2logn)'/2,

Let 0(k) = SUPg<y<nWm. Clearly wy, and hence §(k), also depend on n, but
we do not make this dependence explicit in the notation. In view of Leadbetter
et al. [16) p. 86], we have sup,,~; |rn| < 1 and sup,,>; |pn| < 1. Furthermore,
it is easy to see that sup,,»; |w,| < 1 and §(0) < 1. Further, let 7 be such that
0 <7< (1-4(0))/(1+6(0)) for all sufficiently large n, and let p = [n"].
Then

Ire — pn (un (@)un (y)) 4! uz () + up (y)
Cd? (1= w)i72d em(‘2ﬂ+%>>

< Cnd Z |7y — pn|(un(y))z(d_l) eXp( 1 + wk)

e

+Cnd Y |rp— P (i ()24 exp< >
k=p+1 14wy

= Bn,l + Bn72-

p
=@mszmm%wwwnm%
k=1

Using (3.15)) and wy, < 6(0), we obtain

< Cdn1+‘r(un(y))2(d71) exp <_

d—2
d—1- 1+6(0) |

P 1-46(0)
~ Cdn’ 130 (logn)
Since 0 < 7 < 1-0(0) we get B,1 — 0asn — o0
T < 1x5(0)> We 8t b1 :
For the second part B, 2, we have

«%diw«puu@ﬂ*%p(lmm)
S — Pni\Un XP\ =7, o
k=pt1 ‘ 14 4(p)

2

n u(z) \logn X
= Cd—— (uy, (y))2¢D <_n) — ol
ogn (W)™ e =B )= k:%l 7k — pnl
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Since r, logn — -+, there is a constant C' such that r,logn < C forall n > 1.
Hence also

(3.16) 6(p)logp < C,

so by (3.15)) and (3.16) we have

2

n 2(d—1) _M
(3.17) Cdlogn(un(y)) eXP< 1+<5(p)>

u? (x
(un ()Y exp (_HC:L/(ICSE%“W>

2

logn
2C C(d—2)
< CdnTlogn+C (log n) Tlogn+C — 0(1)
According to Leadbetter et al. [[16, p. 135], we have

logn

n
> lrk—pn| =0.
k=p+1

(3.18) lim

n—oo N

Combining (3.17) with (3.18)), we have B,, 2 — 0 as n — oc. Therefore, the proof
of Lemma 3.5 is complete. m
LEMMA 3.6. Under the conditions of Theorem 2.2 we have, as n — 00,

n |7k — pnl _7’(1)721(37) + U?L(y)) R
(3.19) Cnd k;l (vn(:z:)vn(y))T_l eXp( 2(1 + wy,) > 0,

where wi, = max(|rg|, |pnl)-

Proof. We use the notations of Lemma 3.5. From (2.3)), it is easy to see that

2 r 1/2
(3.20) eXp(_rvn(Jﬂ)) N Cvn(x)’ on() ~ <210gn) ‘

2 n r

As in the proof of Lemma 3.5, split the sum in (3.19) into two parts:

o el (@) +12())
Ond 2. Con(@yony)) ( 2(1 T ) >

P _ 2
<Cnd Y Mexp( "”%(@)

=1 (on ()21 14w

n _ 2
font 3 Il (i)

kepr1 (Vn ()21 L4y

=: Bn’g + Bn’4.
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Using 3.20) and 0 < 7 < 1+5E g we have

Pnl _ rvp(a)
< Cnd Z 7:6 o=y P 1 - 500)
2
1 rv2 () \ THO)
< 1+T _ n
)2 o -57)

1—r+

_1-6(0) r
~ Cdn" 7750 (log n) 0 — 0 asn — 0.

For B, 4, we have

n ‘T —pn‘ TU?L(J")
Bna<Cnd Y (,Un(];))Q(rl)eXp< 1+5())

k=p+1

_ n’ ox 2(z) \logn & .
- i (1 ) oy 7 ol

In view of (3.16)) and (3.20),

2

n rv2 (z)
cd ——r
(1og 1) (0 ()20 )
n? rv2(z)
(logn)(vy (z))20=1) exp( 1+ C/log n7>
n?  (log n)m
(logn)" n1+0/21og T
__2C __r¢
— CdnC+Tlogn (logn) C+71logn — O(]_)
So by using (3.18)), we obtain lim,,_.. B, 4 = 0. Hence the proof of Lemma 3.6
is complete. =

Proof of Theorem 2.1. Let ¥(n,z, ||z||) = n(1 — F\(u,(z,||z]]))). We use the
techniques of Krajka [14]. By the total probability rule and the triangle inequality,
we get

<Cd

‘P(Mn(Xd(X),e) < (), Ma(xa(X)) < ()
k n,x, ||z — n z
_E<f H<1_w< ol + (- )| ||>>dq,(z)>'

Rd s=1
2k _1
<Yy E]P(Mn<><d<x>,e><un<x>, My (xa(X)) < un (1))
=0 0¢{0,1}n
. <1 AW a]) ¢ (1 ¥y ||z||>> 00| 1Bra)
Rds:l

<AL+ Ar+ Az + Ay,
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where
M=Y S B(|POMX).0) < unle). Ma(xa(X)) < (1)
t=0 9¢{0,1}»
— [ P(Co)dd(z )1 Btkgn)>
Rd
2k 1 k
Ay= > > E(f (Co) — 11 P(Cox..2) dq)(z)l(Bt,k,O,n)>7
i=0 oe{0,1}r R =1
2k 1 k
Ag = Z Z E(f H CB sz
t=0 9e{0,1}" Rd | s=
- H(l— e V(2 flz]) + (]1 ) (n,%”Z”)>'d¢)(z)1(Bt,k,9,n>>7
2l e 7 U(n,z,]z]) + (1 = 5%)¥(n,y,|12])
SRR W (¢ : )
(1 A+ N Y g5,
with

Coz = {Mn(xa(Y),0) <un(w,|z[))} N {Mn(xa(Y)) < unly, |2])}

and

CoK.z= {M(xa(Y), Ks, 0) <un(w, ||2]])} N {Mn(xa(Y), Ks) <un(y, ||z]])}-

Using Lemmas 3.3 and 3.5, we have

(3.21) lim A; =0.

n—oo

For As, according to Lemma 3.1, we have
l
Ay < (4k + 2); [ Y(n,z,||z|) d®(z).
Rd

It follows from Leadbetter et al. [[16, proof of Theorem 6.5.1] that, as n — oo,

(3.22) un (@, ||2]]) = un(z +v — /27 12]) + o(a,, "),

and taking into account the tail asymptotic of y-variables (see, e.g., Piterbarg [23]),
we have

(3.23) lim n(1 — F\(un(x))) = exp(—x).

n—oo
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Combining (3.22) with (3.23)), we have

lim U(n,,|l2]) = exp(~(z +7 — /27 |12])) = (.7, |a]).

Noting that [ = o(n) as n — oo, the dominated convergence theorem yields

(3.24) lim Ay = 0.

n—oo

For As, according to (3.7) and using the same arguments as in Krajka [14} (7)], we
have

2k _1
Z > E( P(Co.x,2)

=0 6¢{0,1}» Rd 5=

L\Ij s Ly + 1_L \Ij » Y

_<1_2k s el (-4) (“"Z”))\dwz)l(zat,k,am)

2k _1 k ) .
<y s o[yt L
t=0 6e{0,1}» Rd s=1 m 2
Y lz]) — ¥(n,y, |2])

- dd(z) 1(Bt,k,0,n)>

+ = f (n,x,||z])) dfl)(z)

2k—1 &k Sicn. it
= B(|=EE B
¥y p(|Pees - L m)
\I/n,w, z - (”7y7|z|)
R k
EJGKS €j 1 \I}(nvxa HZH) — (n7y7 HZH)
ZI<E S —A’+2k Rfd k dd(z)
1
+e [ (¥(n,z, ||z]])* dP(z)
Rd
K Ssm S(s 1) 1
= FE — —1 AN+ =
% (8 s~ gm0+ )
\Il(n7x7”zH)_\I’(nayauzu) 1
x| . 49(z) + - [ (U(n,, 2]))? ().
Rd Rd
Since S" P, A as n — 0o, we have %—n”; P, A as m — oo. Furthermore,
SS— m
(3.25) Som o Se=hm (o 1y 3 o) asm o oo

sm (s—1)m
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Thus, we get

1
(3.26) lim sup Az < 27 f(g(:v,% I1zI1) = 9(y, v, [12])) d®(z)

n—oo

+ 5 f (z,7, ||2))? d® ().

For A4, we have

2k _1 t
62 M< T ¥ E(f [ -
t=0 6e{0,1}» Rd s=1
< 2 ’”Dzwmﬂ“ﬁ%@@nwwﬁm)
= [(@(n,,|z]) + U(n,y,||z])) dD(z)
]R{d

(ST

<[ Y(n,z, ||z]) + ¥ (ny,|zl))

2k

dd(z)
Rd

1
= o5 J (9@ [1zll) + 9(y, 7, |12])) d@(z)  asn — oc.
R4

Hence, combining (3.21)), (3:24), (3:26) with (3.27)), we have

liglsogp P(Mn(Xd(X>7€) < un(z), Mp(xa(X)) < Un(y))
Ag(ar .zl + (1= Vg, 2l
_E(H{d (1_ p ) d(I)(z))'
< gt J 9t 1) 89(6) 4 3 [ gt o) a0t

R4
The claimed result follows by letting k& — oo.

Proof of Theorem 2.2. Let

or(n,x,z) =

{nzflu — B(vn(z,2)), r=1,
n 1 (1= ®(va(z, ), r=d.
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By the total probability rule and the triangle inequality, we get

P(M(O(X),€) < vn(x), Ma(OF (X)) < va(y))
k A@T(n7m7z) + (1 — A)‘Pr(na y,Z)
_ E<Rf sl;[1<1 - - ) d@(@)'
2k —
<Y Y E]P(Mn<0£[><x>,e> < va (@), My (07 (X)) < va(p)
t=0 0¢{0,1}»
- [ 11 (1= 2o n 2 O VO] 5)| 1 (B,
Rd s=1
< As + Ag + A7 + Asg,
where
2k 1 (r)
M= 5 B(|P(MU0F(X).0) < tn(e), Ma(OF) (X)) < vn(v)
=0 9e{0,1}"
—fP r) d®(z )1 Bthn))
2k_1 k
M=y ¥ E([|PA)do) - TT P(B.k. ) |d(2)1(Bikon),
t=0 0e{0,1}» ‘Rd s=1
. 261 k Lk (’)”L,%’,Z) (1 - Qik)(pr(nvyvz)
2= % i AL H( : )
- 1 P51 0001 Bua) ).
271 k _ )‘SOT(n>$>Z) + (1 B )‘)@T(n7y7z)
SRR O 1C k )
B H <1 B o5k Pr (n,w,z) + (11 B T“)(pr(nvyvz)) ‘ dCI’(Z)l(Bt,k,e,n))
By Lemmas 3.4 and 3.6,
(3.28) lim As = 0.

n—oo

By Lemma 3.2,
l
A¢ < (4k +2)— [ ¢r(n, x,2) dO(z).
n g
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Again according to Leadbetter et al. [[16, proof of Theorem 6.5.1], we have

Un(z,2;) = vp(x +v—/272) + ol

By using (2.3)), we obtain

n—oo

lim ¢,(n,z,2z) = {25:1 exp(—(x +v—+272)), r=1,
TR e+ v - v2r2)), o,
=: fT(«T7’Y, Z).

The dominated convergence theorem and the fact that | = o(n) as n — oo imply

(3.29) lim Ag = 0.

n—oo

For A7, by the same arguments as for Az, we have

<2k2_1 Z E(j‘ i <1_ ;kgor(n,x,z)—k(l—th)cpr(n,y,z)>
t=0 6¢{0,1}" Rd s=1 k
— P(B,x,)| d0(2) 1<Bt,k7e,n>)
2k 1 ek, 9 ¢
< Z Z E( f Z 2jeKs Y5 %
t=0 6e{0,1}" Rd s=1
LpT(n,x,z) - 907‘(”73/7 ) 1 2
X 3 d®(z) 1(Bire.n) | + z [ (or(n, x,2))* d®(z)
Rd
201 K E;eKS €j t or(n,z,z) — or(n,y,z)
= > Z E — 5 11(Br) | [ d®(z)
t=0 s= 2 Rd k

3 [ (el ,2))? d(a)
Rd

k . .
< Z <E)ZJEKS €j _)\’ 2k> f SDT n,x Z) - @T(nvyvz) d@(Z)

=1 m Rd

V)

b1 [ (prln,,2))? 0 (z)

Rd
k Ssm S(sfl)m 1
=2 (BT G0 A+ )

—er(1:9:5) 10 4 % [ (pr(n,z,2))2 dD(z).
R4 Re

Vo)
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Using (3.25), we get

(3.30) limsup A7 < ok f (fr(z,7,2) — fr(y,7,2)) d®(z)

n—oo

+ % f(fT(xaf%z))z dtID(z)
R4
For Ag, as n — oo we have

t

Aok

(3.31) Ag< kal 3 E(fz

=0 0c{0,1}» \Ras=1

r(N,2,2) + r(N,Y, 2
L e ) +¢r(n,y )dCI)(Z)l(Bt,k,G,n)>

k

= [(¢r(n,z,2) + ¢r(n,y,2)) dO(z)
Rd

v QkZlEQ)\ - ik 1(Bt,k)>

or(n,z,z) + or(n,y,z)
< f ok d®(z)

- 27 [ (Fr(@,7,2) + fr(y, 7, 2)) dD(2).
Rd
Hence, combining (3.28) — (3.31), we have

P (M, (05 (X),€) < va(x), My(0 (X)) < va(y))

- E<f <1 _ Mlavz) (- A)ﬂ(y,%z))kdé(z)))

R4

lim sup
n—oo

< %ffr(w,%Z)dﬂI)( )+ f fr(z,7,2))? dD(2).
R4 Rd

Letting £ — oo, we complete the proof.
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