A NOTE ON A BERNSTEIN-TYPE INEQUALITY FOR THE LOG-LIKELIHOOD FUNCTION OF CATEGORICAL VARIABLES WITH INFINITELY MANY LEVELS

BY
YUNPENG ZHAO* ${ }^{*}$ (Fort Collins, CO)

Abstract

We prove a Bernstein-type bound for the difference between the average of the negative log-likelihoods of independent categorical variables with infinitely many levels - that is, a countably infinite number of categories, and its expectation - namely, the Shannon entropy. The result holds for the class of discrete random variables with tails lighter than or of the same order as a discrete power-law distribution. Most commonly used discrete distributions, such as the Poisson distribution, the negative binomial distribution, and the power-law distribution itself, belong to this class. The bound is effective in the sense that we provide a method to compute the constants within it. The new technique we develop allows us to obtain a uniform concentration inequality for categorical variables with a finite number of levels with the same optimal rate as in the literature, but with a much simpler proof.

2020 Mathematics Subject Classification: Primary 60E15.
Key words and phrases: Bernstein-type bound, categorical variables with infinitely many levels, concentration inequality, Shannon entropy.

1. INTRODUCTION

Concentration inequalities provide powerful tools for various subjects, including information theory [9], algorithm analysis [7], and statistics [14, 13]. The objective of this paper is to establish an exponential decay bound, with computable constants, for the difference between the negative log-likelihood of categorical variables with infinitely many levels and its expectation, i.e., the Shannon entropy.

Let X be a discrete random variable that takes an infinite set of possible values on $\mathcal{X}=\left\{x_{1}, \ldots, x_{k}, \ldots\right\}$. Let $p_{k}=\mathbb{P}\left(X=x_{k}\right)$ be the probability mass at x_{k}. Assume, without loss of generality, that $p_{k}>0$ for each k; otherwise, simply remove x_{k} with $p_{k}=0$ from \mathcal{X}. Let $P(X)$ be a random variable with $P(X)=p_{k}$ if $X=x_{k}, k \geqslant 1$. Then $\mathbb{E}[-\log P(X)]=-\sum_{k=1}^{\infty} p_{k} \log p_{k}$ is the Shannon

[^0]entropy, ${ }^{1}$ which is a key concept in information theory [12, 5] Note that neither $P(X)$ nor the entropy depends on the elements in \mathcal{X}. In fact, \mathcal{X} is not necessarily a set of numbers; the set can contain generic symbols such as letters and is therefore named the alphabet. Consequently, we can equivalently define $P(X)$ and entropy for a categorical variable with infinitely many levels. Let $\mathbf{z}=\left(z_{1}, \ldots, z_{k}, \ldots\right)$ be a dummy coding of a categorical variable with a countably infinite number of categories, in which one and only one entry is 1 , and the others are 0 .

Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ be independently and identically distributed (i.i.d.) copies of \mathbf{z}. Then $\sum_{i=1}^{n} \sum_{k=1}^{\infty} z_{i k} \log p_{k}$ is the joint \log-likelihood of $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$, where $z_{i k}$ is the k th entry of \mathbf{z}_{i}. A natural question is to study the concentration of the loglikelihood and its expectation - namely, the negative entropy. By the weak law of large numbers,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} z_{i k} \log p_{k}-\sum_{k=1}^{\infty} p_{k} \log p_{k}\right| \geqslant \epsilon\right) \rightarrow 0
$$

provided that the entropy is finite. This result, particularly for the case of \mathbf{z} with finite categories, is called the asymptotic equipartition property in the information theory literature. It serves as the foundation for many important results in this field [5, 6].

Exponential decay concentration bounds for log-likelihoods of categorical variables have recently attracted attention. Originally motivated by theoretical research in the statistical analysis of network data [4], Zhao [15] proved a Bernstein-type inequality for log-likelihoods of categorical variables:

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} z_{i k} \log p_{k}-\sum_{k=1}^{K} p_{k} \log p_{k}\right| \geqslant \epsilon\right) \leqslant 2 K \exp \left\{-\frac{n \epsilon^{2}}{2 K(K+\epsilon)}\right\}
$$

where n is the number of variables and K is the number of categories. The bound is uniform over p_{k} and shrinks to zero if $\left(K^{2} \log K\right) / n=o(1)$. Ren [10] improved the inequality in [15] by obtaining the optimal constant for the case when $K=2$. Zhao [16] proved another uniform concentration bound that improves the rate to $(\log K)^{2} / n=o(1)$ and demonstrated that the new rate is optimal.

All of the aforementioned works studied inequalities for categorical variables with a finite number of levels, while our focus in this work is on variables with infinitely many levels. Zhao [16] pointed out that a uniform concentration bound does not exist over the class of $\left\{p_{k}\right\}_{k \geqslant 1}$ if no additional conditions are imposed beyond the requirement that the distributions have finite entropies. In this paper, we prove a Bernstein-type inequality for categorical variables with infinitely many levels, assuming that $\sum_{k=1}^{\infty} p_{k}^{1-r}$ has a finite upper bound for certain r. The concentration bound depends solely on the value of r and on the upper bound of $\sum_{k=1}^{\infty} p_{k}^{1-r}$. The theme of the present paper is not directly focused on entropy estimation (see [1, 3]

[^1]for examples) because $\sum_{k=1}^{\infty} z_{i k} \log p_{k}$ contains the parameters of the distribution. However, this type of concentration inequalities has recently been applied to the concentration of empirical relative entropy [8].

In Section 2, we prove the main result. In Section 3, we show that the assumption of $\sum_{k=1}^{\infty} p_{k}^{1-r}$ being finite holds if the tail of $\left\{p_{k}\right\}_{k \geqslant 1}$ drops faster or on the same order as a discrete power-law distribution; conversely, the assumption cannot be satisfied if the tail drops slower than all power-law distributions. Most commonly used discrete distributions such as the Poisson distribution, the negative binomial distribution, and the power-law distribution itself, satisfy this assumption. Furthermore, we propose a method to compute the constants in the concentration bound. In Section 4, we apply the same proof technique to categorical variables with a finite number of levels and obtain a uniform concentration inequality with the same optimal rate as in [16], albeit with a better constant.

2. MAIN RESULT

Our result requires only one assumption on $\left\{p_{k}\right\}_{k \geqslant 1}$:
Assumption 1. There exists $0<r<1$ such that

$$
\sum_{k=1}^{\infty} p_{k}^{1-r}<\infty
$$

In the following, we denote by C_{r} an upper bound for $\sum_{k=1}^{\infty} p_{k}^{1-r}$, a quantity that will appear in the concentration bound. An estimate of C_{r} will be provided in Section 3 .

Assumption 1 implies that the tail of $\left\{p_{k}\right\}_{k \geqslant 1}$ cannot be too heavy. In Section 3 , we will elaborate on this assumption by showing that the assumption holds if the tail of $\left\{p_{k}\right\}_{k \geqslant 1}$ is lighter than or on the same order as a discrete power-law distribution; conversely, it cannot be satisfied if the tail is heavier than all power-law distributions.

First, note that Assumption 1 ensures the finiteness of the entropy.
Proposition 2.1. Under Assumption 1, $-\sum_{k=1}^{\infty} p_{k} \log p_{k}<\infty$.
Proof. We have

$$
-\sum_{k=1}^{\infty} p_{k} \log p_{k}=\sum_{k=1}^{\infty} p_{k}^{1-r}\left(-p_{k}^{r} \log p_{k}\right) \leqslant \frac{1}{e r} \sum_{k=1}^{\infty} p_{k}^{1-r}
$$

The last inequality holds because $-p_{k}^{r} \log p_{k}$ on $[0,1]$ is maximized at $p_{k}=e^{-1 / r}$. This result can be easily verified by comparing the function value at the stationary point in $(0,1)$, which is unique for this function, with the values at the boundaries. Here, we use the convention $q^{r} \log q=0$ at $q=0$, which ensures the continuity of the function on $[0,1]$, as $\lim _{q \rightarrow 0+} q^{r} \log q=0$.

Readers are referred to [2] for a more thorough study of the conditions for the finiteness of entropy on categorical variables with infinitely many levels.

Let $Y_{i}=\sum_{k=1}^{\infty} z_{i k} \log p_{k}-\sum_{k=1}^{\infty} p_{k} \log p_{k}$. The key ingredient of the proof of the main result is to bound the moment generating function (MGF) of Y_{i}, which is defined as

$$
\mathbb{E}\left[e^{\lambda Y_{i}}\right]=\left(\sum_{k=1}^{\infty} p_{k}^{\lambda+1}\right) \exp \left(-\lambda \sum_{k=1}^{\infty} p_{k} \log p_{k}\right) .
$$

Let the MGF of Y_{i} be denoted by $M_{Y_{i}}(\lambda)$. Under Assumption 1, $M_{Y_{i}}(\lambda)$ is finite for $|\lambda|<r$ because

$$
\sum_{k=1}^{\infty} p_{k}^{\lambda+1} \leqslant \sum_{k=1}^{\infty} p_{k}^{1-r}<\infty .
$$

Conversely, if Assumption 1 does not hold then $\sum_{k=1}^{\infty} p_{k}^{\lambda+1}$ diverges for all $\lambda<0$, because if $\sum_{k=1}^{\infty} p_{k}^{\lambda+1}$ converges for a certain negative λ then it must be within the interval $(-1,0)$ and one can take $r=-\lambda$.

We now give the main result.
THEOREM 2.1 (Main result). Under Assumption 1, specifically, if there exists $0<r<1$ such that

$$
\sum_{k=1}^{\infty} p_{k}^{1-r} \leqslant C_{r}<\infty
$$

then for $|\lambda|<r$,

$$
M_{Y_{i}}(\lambda) \leqslant \exp \left(\frac{C_{r} \lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}\right) .
$$

Furthermore, for all $\epsilon>0$,

$$
\begin{align*}
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} z_{i k} \log p_{k}-\sum_{k=1}^{\infty} p_{k} \log p_{k}\right|\right. & \geqslant \epsilon) \tag{2.1}\\
& \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{2 C_{r} /\left(\sqrt{\pi} r^{2}\right)+2 \epsilon / r}\right)
\end{align*}
$$

Proof. For $|\lambda|<r$,
(2.2) $\log M_{Y_{i}}(\lambda)=\log \left(\sum_{k=1}^{\infty} p_{k}^{\lambda+1}\right)-\lambda \sum_{k=1}^{\infty} p_{k} \log p_{k}$

$$
\begin{aligned}
& \leqslant \sum_{k=1}^{\infty} p_{k}^{\lambda+1}-1-\lambda \sum_{k=1}^{\infty} p_{k} \log p_{k} \\
& =\sum_{k=1}^{\infty} p_{k} \exp \left(\lambda \log p_{k}\right)-1-\lambda \sum_{k=1}^{\infty} p_{k} \log p_{k} \\
& =\sum_{k=1}^{\infty}\left(p_{k}+\lambda p_{k} \log p_{k}+\sum_{m=2}^{\infty} \frac{1}{m!} \lambda^{m} p_{k}\left(\log p_{k}\right)^{m}\right)-1-\lambda \sum_{k=1}^{\infty} p_{k} \log p_{k},
\end{aligned}
$$

where the inequality follows from $\log x \leqslant x-1$ for $x>0$.

For $m \geqslant 2$, it is easy to check that the minimum of $p_{k}^{r}\left(\log p_{k}\right)^{m}$ on $[0,1]$ when m is an odd number, and the maximum when m is an even number, are both achieved at $e^{-m / r}$. This can be verified by comparing the function value at the unique stationary point within $(0,1)$ with the values at the boundaries. Here we use the convention $q^{r}(\log q)^{m}=0$ at $q=0$ as before, which ensures the continuity of the function on $[0,1]$, as $\lim _{q \rightarrow 0+} q^{r}(\log q)^{m}=0$.

Therefore, for $m \geqslant 2$,

$$
\begin{align*}
\left|\frac{1}{m!} \lambda^{m} p_{k}\left(\log p_{k}\right)^{m}\right| & =p_{k}^{1-r} \frac{1}{m!}|\lambda|^{m}\left|p_{k}^{r}\left(\log p_{k}\right)^{m}\right| \tag{2.3}\\
& \leqslant p_{k}^{1-r} \frac{1}{m!}|\lambda|^{m} e^{-m}\left(\frac{m}{r}\right)^{m} \\
& \leqslant p_{k}^{1-r} \frac{1}{m!}(|\lambda| / r)^{m} \frac{m!}{\sqrt{2 \pi m}} \\
& \leqslant p_{k}^{1-r}\left(\frac{|\lambda|}{r}\right)^{m} \frac{1}{2 \sqrt{\pi}}
\end{align*}
$$

where the first inequality is obtained by replacing $\left|p_{k}^{r}\left(\log p_{k}\right)^{m}\right|$ with its maximum and the second inequality follows from Stirling's formula (see [11] for example):

$$
m!\geqslant \sqrt{2 \pi m}\left(\frac{m}{e}\right)^{m} \quad \text { for } m \geqslant 1
$$

It follows that for $|\lambda|<r$,

$$
\begin{aligned}
\left|\sum_{m=2}^{\infty} \frac{1}{m!} \lambda^{m} p_{k}\left(\log p_{k}\right)^{m}\right| & \leqslant \sum_{m=2}^{\infty}\left|\frac{1}{m!} \lambda^{m} p_{k}\left(\log p_{k}\right)^{m}\right| \\
& \leqslant p_{k}^{1-r} \sum_{m=2}^{\infty}\left(\frac{|\lambda|}{r}\right)^{m} \frac{1}{2 \sqrt{\pi}}=p_{k}^{1-r} \frac{\lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}
\end{aligned}
$$

and

$$
\sum_{k=1}^{\infty}\left|\sum_{m=2}^{\infty} \frac{1}{m!} \lambda^{m} p_{k}\left(\log p_{k}\right)^{m}\right| \leqslant C_{r} \frac{\lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}
$$

Since the three terms under the first sum in the last line of (2.2) all converge absolutely for $|\lambda|<r$, one can take the sum term by term. Therefore, for $|\lambda|<r$,

$$
\log M_{Y_{i}}(\lambda) \leqslant \sum_{k=1}^{\infty}\left|\sum_{m=2}^{\infty} \frac{1}{m!} \lambda^{m} p_{k}\left(\log p_{k}\right)^{m}\right| \leqslant C_{r} \frac{\lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}
$$

and

$$
\begin{equation*}
M_{Y_{i}}(\lambda) \leqslant \exp \left(\frac{C_{r} \lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}\right) \tag{2.4}
\end{equation*}
$$

The second part follows from a standard argument using the Chernoff bound, which can be found in [14, Chapter 2]. We give the details for completeness. For $t>0$ and $0<\lambda<r$,

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{n} Y_{i} \geqslant t\right) & =\mathbb{P}\left(e^{\lambda \sum_{i=1}^{n} Y_{i}} \geqslant e^{\lambda t}\right) \leqslant \frac{\prod_{i=1}^{n} M_{Y_{i}}(\lambda)}{e^{\lambda t}} \\
& \leqslant \exp \left\{\frac{n C_{r} \lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}-\lambda t\right\}
\end{aligned}
$$

where the first inequality is Markov's inequality and the second inequality follows from (2.4). By setting

$$
\lambda=\frac{t}{n C_{r} /\left(\sqrt{\pi} r^{2}\right)+t / r} \in(0, r)
$$

we obtain

$$
\mathbb{P}\left(\sum_{i=1}^{n} Y_{i} \geqslant t\right) \leqslant \exp \left(-\frac{t^{2}}{2 n C_{r} /\left(\sqrt{\pi} r^{2}\right)+2 t / r}\right)
$$

The left tail bound can be derived similarly by setting $\lambda=-\frac{t}{n C_{r} /\left(\sqrt{\pi} r^{2}\right)+t / r}$. Therefore,

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} Y_{i}\right| \geqslant t\right) \leqslant 2 \exp \left(-\frac{t^{2}}{2 n C_{r} /\left(\sqrt{\pi} r^{2}\right)+2 t / r}\right)
$$

Finally, letting $t=n \epsilon$, we get

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{2 C_{r} /\left(\sqrt{\pi} r^{2}\right)+2 \epsilon / r}\right)
$$

Theorem 2.1 can be generalized to $\left\{\mathbf{z}_{i}\right\}_{i=1}^{n}$ with independent but non-identical distributions. Let $p_{i k}=\mathbb{P}\left(z_{i k}=1\right)$ be the probability that the i th observation belongs to category k, and $-\sum_{k=1}^{\infty} p_{i k} \log p_{i k}$ be the entropy of \mathbf{z}_{i}. In addition, redefine Y_{i} and $M_{Y_{i}}(\lambda)$ accordingly. We have the following result for non-identical distributions:

Corollary 2.1. If there exists $0<r<1$ such that

$$
\sum_{k=1}^{\infty} p_{i k}^{1-r} \leqslant C_{r, i}<\infty, \quad i=1, \ldots, n
$$

then for $|\lambda|<r$,

$$
M_{Y_{i}}(\lambda) \leqslant \exp \left(\frac{C_{r, i} \lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}\right)
$$

Furthermore, for all $\epsilon>0$,

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty}\left(z_{i k}-p_{i k}\right) \log p_{i k}\right|\right. & \geqslant \epsilon) \\
\leqslant & 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sum_{i=1}^{n} C_{r, i} /\left(n \sqrt{\pi} r^{2}\right)+2 \epsilon / r}\right)
\end{aligned}
$$

The proof is the same as that of Theorem 2.1.

3. DETERMINING THE CONSTANTS IN THE BOUND

The radius of convergence r in (2.3) and the upper bound C_{r} for $\sum_{k=1}^{\infty} p_{k}^{1-r}$ are the constants to be determined if one wants to use (2.1) as an effective upper bound for a given distribution $\left\{p_{k}\right\}_{k \geqslant 1}$.

We first determine the types of distributions and the range of r that can make $\sum_{k=1}^{\infty} p_{k}^{1-r}$ converge. Intuitively speaking, for distributions that satisfy Assumption 1, the tail of $\left\{p_{k}\right\}_{k \geqslant 1}$ cannot be too heavy. We make the above statement precise in the following proposition.

Proposition 3.1. The distribution $\left\{p_{k}\right\}_{k \geqslant 1}$ satisfies Assumption 1 if the tail of $\left\{p_{k}\right\}_{k \geqslant 1}$ is lighter than or on the same order as a discrete power-law distribution; conversely, Assumption 1 cannot be satisfied if the tail is heavier than all power-law distributions. Specifically:
(i) If

$$
\lim _{k \rightarrow \infty} \frac{p_{k}}{k^{-\alpha}}=0 \quad \text { for all } \alpha>1
$$

then

$$
\sum_{k=1}^{\infty} p_{k}^{1-r}<\infty \quad \text { for all } 0<r<1
$$

(ii) If

$$
0<\liminf _{k \rightarrow \infty} \frac{p_{k}}{k^{-\alpha}} \leqslant \limsup _{k \rightarrow \infty} \frac{p_{k}}{k^{-\alpha}}<\infty \quad \text { for some } \alpha>1
$$

then

$$
\sum_{k=1}^{\infty} p_{k}^{1-r}<\infty \quad \text { if and only if } \quad 0<r<\frac{\alpha-1}{\alpha}
$$

(iii) If

$$
\lim _{k \rightarrow \infty} \frac{p_{k}}{k^{-\alpha}}=\infty \quad \text { for all } \alpha>1
$$

then

$$
\sum_{k=1}^{\infty} p_{k}^{1-r}=\infty \quad \text { for all } 0<r<1
$$

Proof. Recall that $\sum_{k=1}^{\infty} k^{-\beta}$ converges for $\beta>1$, and diverges for $\beta \leqslant 1$. Statement (i) is obvious by taking $\alpha>1 /(1-r)$. Statement (ii) is also obvious by noticing that the assumption implies that there exist positive constants a_{1}, a_{2} such that $a_{1} k^{-\alpha} \leqslant p_{k} \leqslant a_{2} k^{-\alpha}$ for sufficiently large k. We prove (iii) by contradiction. If there exists $0<r<1$ such that $\sum_{k=1}^{\infty} p_{k}^{1-r}<\infty$, then

$$
\liminf _{k \rightarrow \infty} \frac{p_{k}^{1-r}}{k^{-1}}=0
$$

This implies

$$
\liminf _{k \rightarrow \infty} \frac{p_{k}}{k^{-1 /(1-r)}}=0
$$

which contradicts the assumption since $1 /(1-r)>1$.
Proposition 3.1 implies that there is a wide class of discrete distributions satisfying Assumption 1, including the most commonly used ones such as the Poisson distribution, the negative binomial distribution, and the power-law distribution itself. The class even contains certain discrete random variables that do not have finite expectations. In fact, if X follows a discrete power-law distribution with $1<\alpha \leqslant 2$ then $\mathbb{E}[X]=\infty$ since $\sum_{k=1}^{\infty} k^{-(\alpha-1)}$ diverges. But such distributions satisfy Assumption 1 by Proposition 3.1(ii).

REMARK 3.1. It may be surprising, at first glance, to get an exponential decay bound for a power-law distribution, which itself is heavy-tailed. But note that 2.1) is a concentration bound for $\log P(X)$, not for X. The \log-likelihood $\log P(X)$ is typically better-behaved than X that takes values on non-negative integers and follows a power-law distribution. For example, the MGF of X is infinite if X follows a power-law distribution while the MGF of $\log P(X)$ can be finite. This phenomenon can be explained by noticing that $-\log \left(k^{-\alpha}\right)$ grows much slower than k.

Finally, we discuss how to compute C_{r} after r is determined by Proposition 3.1. In practice, one can compute the partial sum of $\sum_{k=1}^{\infty} p_{k}^{1-r}$ until the increment is negligible. The value obtained in this way, however, is a lower bound for $\sum_{k=1}^{\infty} p_{k}^{1-r}$ as in principle, the tail behavior cannot be predicted by a finite number of terms ${ }^{2}$.

If the tail of $\left\{p_{k}\right\}_{k \geqslant 1}$ is dominated by a power-law distribution, we propose a method that can compute an upper bound for $\sum_{k=1}^{\infty} p_{k}^{1-r}$ at any tolerance level. Specifically, the next proposition shows how to compute an upper bound C_{r} for $\sum_{k=1}^{\infty} p_{k}^{1-r}$ with $\left|\sum_{k=1}^{\infty} p_{k}^{1-r}-C_{r}\right|$ smaller than a pre-specified tolerance level if we find k_{0} such that $p_{k} \leqslant c_{0} k^{-\alpha}$ for $k>k_{0}$. Note that such a k_{0} exists if $\left\{p_{k}\right\}_{k} \geqslant 1$ satisfies the condition in (i) or (ii) in Proposition 3.1 .

[^2]Proposition 3.2. Suppose k_{0} is a positive integer such that $p_{k} \leqslant c_{0} k^{-\alpha}$ for a certain $\alpha>1$ and all $k>k_{0}$, where $c_{0}>0$. Pick r such that $0<r<(\alpha-1) / \alpha$. For all $\epsilon>0$, let

$$
k_{1}=\max \left\{k_{0},\left\lceil\left(\frac{\epsilon(\alpha(1-r)-1)}{c_{0}^{1-r}}\right)^{-1 /[\alpha(1-r)-1]}\right\rceil\right\}
$$

where $\lceil\cdot\rceil$ indicates rounding up to the next integer. Then

$$
C_{r}=\sum_{k=1}^{k_{1}} p_{k}^{1-r}+\epsilon
$$

satisfies

$$
0 \leqslant C_{r}-\sum_{k=1}^{\infty} p_{k}^{1-r} \leqslant \epsilon
$$

Proof. We only need to bound the tail probability for $k>k_{1}$:

$$
\begin{aligned}
\sum_{k=k_{1}+1}^{\infty} p_{k}^{1-r} & \leqslant c_{0}^{1-r} \sum_{k=k_{1}+1}^{\infty} k^{-\alpha(1-r)} \\
& =c_{0}^{1-r} \sum_{k=k_{1}}^{\infty} \int_{k}^{k+1}(k+1)^{-\alpha(1-r)} d x \\
& \leqslant c_{0}^{1-r} \int_{k_{1}}^{\infty} x^{-\alpha(1-r)} d x \\
& =\frac{c_{0}^{1-r}}{\alpha(1-r)-1} k_{1}^{-(\alpha(1-r)-1)} \leqslant \epsilon
\end{aligned}
$$

where the first inequality holds because $p_{k} \leqslant c_{0} k^{-\alpha}$ for all $k>k_{0}$ and the last inequality holds because

$$
k_{1} \geqslant\left\lceil\left(\frac{\epsilon(\alpha(1-r)-1)}{c_{0}^{1-r}}\right)^{-1 /[\alpha(1-r)-1]}\right\rceil
$$

Therefore,

$$
\sum_{k=1}^{\infty} p_{k}^{1-r}=\sum_{k=1}^{k_{1}} p_{k}^{1-r}+\sum_{k=k_{1}+1}^{\infty} p_{k}^{1-r} \leqslant \sum_{k=1}^{k_{1}} p_{k}^{1-r}+\epsilon
$$

Proposition 3.2 provides a general method for estimating the upper bound of $\sum_{k} p_{k}^{1-r}$. For power-law, Poisson, and negative binomial distributions, we offer more explicit estimates of the upper bound of $\sum_{k} p_{k}^{1-r}$ below.

Proposition 3.3. For $p_{k}=k^{-\alpha} / \zeta(\alpha)(\alpha>1, k=1,2, \ldots)$, and all r such that $0<r<(\alpha-1) / \alpha$,

$$
\sum_{k=1}^{\infty} p_{k}^{1-r}=\frac{1}{[\zeta(\alpha)]^{1-r}} \zeta(\alpha(1-r)),
$$

where $\zeta(\alpha)$ is the Riemann zeta function.
The proof is straightforward.
Proposition 3.4. For $p_{k}=e^{-\mu} \mu^{k} / k!(\mu>0, k=0,1,2, \ldots)$, all r such that $0<r<1$, and all integers k_{0} such that $k_{0}>e \mu$,

$$
\begin{aligned}
& \sum_{k=0}^{\infty} p_{k}^{1-r} \\
& \quad \leqslant e^{-\mu(1-r)}\left[\sum_{k=0}^{k_{0}-1}\left(\frac{\mu^{k}}{k!}\right)^{1-r}+\left(2 \pi k_{0}\right)^{-\frac{1}{2}(1-r)}\left(\frac{e \mu}{k_{0}}\right)^{k_{0}(1-r)} \frac{1}{1-\left(e \mu / k_{0}\right)^{1-r}}\right] .
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& \sum_{k=0}^{\infty} p_{k}^{1-r} \\
& \leqslant e^{-\mu(1-r)}\left[\sum_{k=0}^{k_{0}-1}\left(\frac{\mu^{k}}{k!}\right)^{1-r}+\sum_{k=k_{0}}^{\infty} \mu^{k(1-r)}(2 \pi k)^{-\frac{1}{2}(1-r)}\left(\frac{e}{k}\right)^{k(1-r)}\right] \\
& \leqslant e^{-\mu(1-r)}\left[\sum_{k=0}^{k_{0}-1}\left(\frac{\mu^{k}}{k!}\right)^{1-r}+\left(2 \pi k_{0}\right)^{-\frac{1}{2}(1-r)} \sum_{k=k_{0}}^{\infty}\left(\frac{e \mu}{k_{0}}\right)^{k(1-r)}\right] \\
& =e^{-\mu(1-r)}\left[\sum_{k=0}^{k_{0}-1}\left(\frac{\mu^{k}}{k!}\right)^{1-r}+\left(2 \pi k_{0}\right)^{-\frac{1}{2}(1-r)}\left(\frac{e \mu}{k_{0}}\right)^{k_{0}(1-r)} \frac{1}{1-\left(e \mu / k_{0}\right)^{1-r}}\right]
\end{aligned}
$$

Proposition 3.5. Let X follow a negative binomial distribution, i.e.,

$$
p_{k}=\binom{k+s-1}{k}(1-p)^{k} p^{s}, \quad k=0,1,2, \ldots,
$$

where $0<p<1$ and s is a positive integer. Then for all r such that $0<r<1$, we have

$$
\sum_{k=0}^{\infty} p_{k}^{1-r} \leqslant\left(\frac{p}{1-\sqrt{1-p}}\right)^{s(1-r)} \frac{1}{1-(1-p)^{(1-r) / 2}}
$$

Proof. The MGF of X is

$$
\mathbb{E}\left[e^{\lambda X}\right]=\left(\frac{p}{1-(1-p) e^{\lambda}}\right)^{s} \quad \text { for } \lambda<-\log (1-p)
$$

By Markov's inequality, for $0<\lambda<-\log (1-p)$,

$$
p_{k} \leqslant \mathbb{P}(X \geqslant k)=\mathbb{P}\left(e^{\lambda X} \geqslant e^{\lambda k}\right) \leqslant \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda k}}=\left(\frac{p}{1-(1-p) e^{\lambda}}\right)^{s} e^{-\lambda k}
$$

Letting $\lambda=-\frac{1}{2} \log (1-p)$, we obtain

$$
p_{k} \leqslant\left(\frac{p}{1-\sqrt{1-p}}\right)^{s}(1-p)^{k / 2}
$$

Therefore, for $0<r<1$,

$$
\begin{aligned}
\sum_{k=0}^{\infty} p_{k}^{1-r} & \leqslant\left(\frac{p}{1-\sqrt{1-p}}\right)^{s(1-r)} \sum_{k=0}^{\infty}(1-p)^{k(1-r) / 2} \\
& =\left(\frac{p}{1-\sqrt{1-p}}\right)^{s(1-r)} \frac{1}{1-(1-p)^{(1-r) / 2}}
\end{aligned}
$$

4. UNIFORM CONCENTRATION INEQUALITY FOR CATEGORICAL VARIABLES WITH A FINITE NUMBER OF LEVELS

The same technique used in the proof of Theorem 2.1 can be applied to the case of categorical variables with a finite number of levels to obtain a uniform concentration inequality with the same optimal rate as in [16], but with a much simpler proof. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ be independent categorical variables with K categories and $p_{i k}=P\left(z_{i k}=1\right)$ for $i=1, \ldots, n, k=1, \ldots, K$, and $\mathbf{p}_{i}=\left(p_{i 1}, \ldots, p_{i K}\right)$ for $i=1, \ldots, n$. The entropy of \mathbf{z}_{i} is defined as $-\sum_{k=1}^{K} p_{i k} \log p_{i k}$. Finally, let $\mathcal{C}=\left\{\mathbf{q}=\left(q_{1}, \ldots, q_{K}\right): 0<q_{k}<1, k=1, \ldots, K, \sum_{k=1}^{K} q_{k}=1\right\}$ be the constraint on $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}$. We have the following uniform concentration inequalities:

Theorem 4.1. For $2 \leqslant K \leqslant 7$ and all $\epsilon>0$,

$$
\sup _{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathcal{C}} \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(z_{i k}-p_{i k}\right) \log p_{i k}\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{2 K / \sqrt{\pi}+2 \epsilon}\right) .
$$

For $K \geqslant 8$ and all $\epsilon>0$,

$$
\begin{aligned}
\sup _{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathcal{C}} \mathbb{P}\left(\left\lvert\, \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(z_{i k}-\right.\right.\right. & \left.\left.p_{i k}\right) \log p_{i k} \mid \geqslant \epsilon\right) \\
& \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{e^{2}(\log K)^{2} /(2 \sqrt{\pi})+\epsilon \log K}\right)
\end{aligned}
$$

Proof. Let $Y_{i}=\sum_{k=1}^{K}\left(z_{i k}-p_{i k}\right) \log p_{i k}$. Similar to the proof of Theorem 2.1. for $0<r \leqslant 1$ and $|\lambda|<r$,

$$
\begin{aligned}
\log M_{Y_{i}}(\lambda) & =\log \left(\sum_{k=1}^{K} p_{i k}^{\lambda+1}\right)-\lambda \sum_{k=1}^{K} p_{i k} \log p_{i k} \\
& \leqslant \sum_{k=1}^{K} \sum_{m=2}^{\infty} p_{i k}^{1-r}\left(\frac{|\lambda|}{r}\right)^{m} \frac{1}{2 \sqrt{\pi}}=\left(\sum_{k=1}^{K} p_{i k}^{1-r}\right) \frac{\lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}
\end{aligned}
$$

Since $p_{i k}^{1-r}$ is a concave function of $p_{i k}$ for $0<r \leqslant 1$, by Jensen's inequality,

$$
\sum_{k=1}^{K} p_{i k}^{1-r}=K \frac{\sum_{k=1}^{K} p_{i k}^{1-r}}{K} \leqslant K\left(\frac{\sum_{k=1}^{K} p_{i k}}{K}\right)^{1-r}=K^{r}
$$

Therefore, for $0<r \leqslant 1$ and $|\lambda|<r$,

$$
M_{Y_{i}}(\lambda) \leqslant \exp \left(K^{r} \frac{\lambda^{2}}{r^{2}} \frac{1}{1-|\lambda| / r} \frac{1}{2 \sqrt{\pi}}\right)
$$

Similar to the proof of Theorem 2.1 ,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{2 K^{r} /\left(\sqrt{\pi} r^{2}\right)+2 \epsilon / r}\right) \quad \text { for } 0<r \leqslant 1
$$

Finally, we pick r that minimizes K^{r} / r^{2} over $r \in(0,1]$. For $2 \leqslant K \leqslant 7$, we take $r=1$, which gives

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{2 K / \sqrt{\pi}+2 \epsilon}\right)
$$

For $K \geqslant 8$, we take $r=2 / \log K<1$, which gives

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{e^{2}(\log K)^{2} /(2 \sqrt{\pi})+\epsilon \log K}\right)
$$

REMARK 4.1. In [16] we proved that for sufficiently small positive ϵ and $K \geqslant 5$,

$$
\sup _{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathcal{C}} \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(z_{i k}-p_{i k}\right) \log p_{i k}\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(-\frac{n \epsilon^{2}}{4(\log K)^{2}}\right)
$$

and the rate $(\log K)^{2} / n=o(1)$ is optimal. Theorem2.1 achieves the same optimal rate with a better constant.

Acknowledgments. We thank the editor, the associate editor, and the anonymous reviewer for their valuable feedback and constructive comments.

REFERENCES

[1] A. Antos and I. Kontoyiannis, Convergence properties of functional estimates for discrete distributions, Random Structures Algorithms 19 (2001), 163-193.
[2] V. Baccetti and M. Visser, Infinite Shannon entropy, J. Statist. Mech. Theory Exp. 4 (2013), art. P04010, 12 pp .
[3] J. Beirlant, E. J. Dudewicz, L. Györfi, E. C. Van der Meulen, Nonparametric entropy estimation: An overview, Int. J. Math. Math. Sci. 6 (1997), 17-39.
[4] D. S. Choi, P. J. Wolfe, and E. M. Airoldi, Stochastic blockmodels with a growing number of classes, Biometrika 99 (2012), 273-284.
[5] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley-Interscience, Hoboken, NJ, 2006.
[6] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, Cambridge Univ. Press, Cambridge, 2011.
[7] D. P. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge Univ. Press, Cambridge, 2009.
[8] Y. Li and B. Tian, Optimal non-asymptotic concentration of centered empirical relative entropy in the high-dimensional regime, Statist. Probab. Lett. 197 (2023), art. 109803, 5 pp.
[9] M. Raginsky and I. Sason, Concentration of measure inequalities in information theory, communications and coding, arXiv:1212.4663 (2012).
[10] Z. Ren, Optimal distribution-free concentration for the log-likelihood function of Bernoulli variables, J. Inequal. Appl. 2023, art. 81, 11 pp.
[11] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955), 26-29.
[12] C. E. Shannon, A mathematical theory of communication, Bell Labs Tech. J. 27 (1948), 379423.
[13] R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge Univ. Press, Cambridge, 2018.
[14] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cambridge Univ. Press, Cambridge, 2019.
[15] Y. Zhao, A note on new Bernstein-type inequalities for the log-likelihood function of Bernoulli variables, Statist. Probab. Lett. 163 (2020), art. 108779, 5 pp.
[16] Y. Zhao, An optimal uniform concentration inequality for discrete entropies on finite alphabets in the high-dimensional setting, Bernoulli 28 (2022), 1892-1911.

Yunpeng Zhao
Department of Statistics
Colorado State University
Fort Collins, CO 80521, USA
E-mail: Yunpeng.Zhao@colostate.edu

[^0]: * This research was supported by the U.S. National Science Foundation grant DMS-1840203.

[^1]: ${ }^{1}$ Throughout the paper, "log" denotes the natural logarithm.

[^2]: ${ }^{2}$ This issue is minor in practice especially when p_{k} drops exponentially. The series $\sum_{k=1}^{\infty} p_{k}^{1-r}$ converges fast in this case. There is nothing wrong with taking the partial sum until the increment is negligible. The method in Proposition 3.2 is useful to someone who needs a rigorous upper bound.

