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Abstract. We prove a Bernstein-type bound for the difference between the
average of the negative log-likelihoods of independent categorical variables
with infinitely many levels – that is, a countably infinite number of cate-
gories, and its expectation – namely, the Shannon entropy. The result holds
for the class of discrete random variables with tails lighter than or of the
same order as a discrete power-law distribution. Most commonly used dis-
crete distributions, such as the Poisson distribution, the negative binomial
distribution, and the power-law distribution itself, belong to this class. The
bound is effective in the sense that we provide a method to compute the
constants within it. The new technique we develop allows us to obtain a uni-
form concentration inequality for categorical variables with a finite number
of levels with the same optimal rate as in the literature, but with a much
simpler proof.
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1. INTRODUCTION

Concentration inequalities provide powerful tools for various subjects, including
information theory [9], algorithm analysis [7], and statistics [14, 13]. The objective
of this paper is to establish an exponential decay bound, with computable constants,
for the difference between the negative log-likelihood of categorical variables with
infinitely many levels and its expectation, i.e., the Shannon entropy.

Let X be a discrete random variable that takes an infinite set of possible values
on X = {x1, . . . , xk, . . . }. Let pk = P(X = xk) be the probability mass at xk.
Assume, without loss of generality, that pk > 0 for each k; otherwise, simply
remove xk with pk = 0 from X . Let P (X) be a random variable with P (X) = pk
if X = xk, k ­ 1. Then E[− logP (X)] = −

∑∞
k=1 pk log pk is the Shannon
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entropy,1 which is a key concept in information theory [12, 5] Note that neither
P (X) nor the entropy depends on the elements in X . In fact, X is not necessarily a
set of numbers; the set can contain generic symbols such as letters and is therefore
named the alphabet. Consequently, we can equivalently define P (X) and entropy
for a categorical variable with infinitely many levels. Let z = (z1, . . . , zk, . . . )
be a dummy coding of a categorical variable with a countably infinite number of
categories, in which one and only one entry is 1, and the others are 0.

Let z1, . . . , zn be independently and identically distributed (i.i.d.) copies of z.
Then

∑n
i=1

∑∞
k=1 zik log pk is the joint log-likelihood of z1, . . . , zn, where zik is

the kth entry of zi. A natural question is to study the concentration of the log-
likelihood and its expectation – namely, the negative entropy. By the weak law of
large numbers,

P
(∣∣∣∣ 1n n∑

i=1

∞∑
k=1

zik log pk −
∞∑
k=1

pk log pk

∣∣∣∣ ­ ϵ

)
→ 0,

provided that the entropy is finite. This result, particularly for the case of z with
finite categories, is called the asymptotic equipartition property in the information
theory literature. It serves as the foundation for many important results in this field
[5, 6].

Exponential decay concentration bounds for log-likelihoods of categorical vari-
ables have recently attracted attention. Originally motivated by theoretical research
in the statistical analysis of network data [4], Zhao [15] proved a Bernstein-type
inequality for log-likelihoods of categorical variables:

P
(∣∣∣∣ 1n n∑

i=1

K∑
k=1

zik log pk −
K∑
k=1

pk log pk

∣∣∣∣ ­ ϵ

)
¬ 2K exp

{
− nϵ2

2K(K + ϵ)

}
,

where n is the number of variables and K is the number of categories. The bound
is uniform over pk and shrinks to zero if (K2 logK)/n = o(1). Ren [10] improved
the inequality in [15] by obtaining the optimal constant for the case when K = 2.
Zhao [16] proved another uniform concentration bound that improves the rate to
(logK)2/n = o(1) and demonstrated that the new rate is optimal.

All of the aforementioned works studied inequalities for categorical variables
with a finite number of levels, while our focus in this work is on variables with in-
finitely many levels. Zhao [16] pointed out that a uniform concentration bound does
not exist over the class of {pk}k­1 if no additional conditions are imposed beyond
the requirement that the distributions have finite entropies. In this paper, we prove
a Bernstein-type inequality for categorical variables with infinitely many levels,
assuming that

∑∞
k=1 p

1−r
k has a finite upper bound for certain r. The concentration

bound depends solely on the value of r and on the upper bound of
∑∞

k=1 p
1−r
k . The

theme of the present paper is not directly focused on entropy estimation (see [1, 3]

1Throughout the paper, “log” denotes the natural logarithm.
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for examples) because
∑∞

k=1 zik log pk contains the parameters of the distribution.
However, this type of concentration inequalities has recently been applied to the
concentration of empirical relative entropy [8].

In Section 2, we prove the main result. In Section 3, we show that the assump-
tion of

∑∞
k=1 p

1−r
k being finite holds if the tail of {pk}k­1 drops faster or on the

same order as a discrete power-law distribution; conversely, the assumption cannot
be satisfied if the tail drops slower than all power-law distributions. Most com-
monly used discrete distributions such as the Poisson distribution, the negative bi-
nomial distribution, and the power-law distribution itself, satisfy this assumption.
Furthermore, we propose a method to compute the constants in the concentration
bound. In Section 4, we apply the same proof technique to categorical variables
with a finite number of levels and obtain a uniform concentration inequality with
the same optimal rate as in [16], albeit with a better constant.

2. MAIN RESULT

Our result requires only one assumption on {pk}k­1:

ASSUMPTION 1. There exists 0 < r < 1 such that

∞∑
k=1

p1−rk <∞.

In the following, we denote by Cr an upper bound for
∑∞

k=1 p
1−r
k , a quantity

that will appear in the concentration bound. An estimate of Cr will be provided in
Section 3.

Assumption 1 implies that the tail of {pk}k­1 cannot be too heavy. In Section 3,
we will elaborate on this assumption by showing that the assumption holds if the
tail of {pk}k­1 is lighter than or on the same order as a discrete power-law dis-
tribution; conversely, it cannot be satisfied if the tail is heavier than all power-law
distributions.

First, note that Assumption 1 ensures the finiteness of the entropy.

PROPOSITION 2.1. Under Assumption 1, −
∑∞

k=1 pk log pk <∞.

Proof. We have

−
∞∑
k=1

pk log pk =
∞∑
k=1

p1−rk (−prk log pk) ¬
1

er

∞∑
k=1

p1−rk .

The last inequality holds because−prk log pk on [0, 1] is maximized at pk = e−1/r.
This result can be easily verified by comparing the function value at the stationary
point in (0, 1), which is unique for this function, with the values at the boundaries.
Here, we use the convention qr log q = 0 at q = 0, which ensures the continuity of
the function on [0, 1], as limq→0+ qr log q = 0. ■
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Readers are referred to [2] for a more thorough study of the conditions for the
finiteness of entropy on categorical variables with infinitely many levels.

Let Yi =
∑∞

k=1 zik log pk −
∑∞

k=1 pk log pk. The key ingredient of the proof
of the main result is to bound the moment generating function (MGF) of Yi, which
is defined as

E[eλYi ] =
( ∞∑
k=1

pλ+1
k

)
exp

(
−λ

∞∑
k=1

pk log pk

)
.

Let the MGF of Yi be denoted by MYi(λ). Under Assumption 1, MYi(λ) is finite
for |λ| < r because

∞∑
k=1

pλ+1
k ¬

∞∑
k=1

p1−rk <∞.

Conversely, if Assumption 1 does not hold then
∑∞

k=1 p
λ+1
k diverges for all λ < 0,

because if
∑∞

k=1 p
λ+1
k converges for a certain negative λ then it must be within the

interval (−1, 0) and one can take r = −λ.
We now give the main result.

THEOREM 2.1 (Main result). Under Assumption 1, specifically, if there exists
0 < r < 1 such that

∞∑
k=1

p1−rk ¬ Cr <∞,

then for |λ| < r,

MYi(λ) ¬ exp

(
Crλ

2

r2
1

1− |λ|/r
1

2
√
π

)
.

Furthermore, for all ϵ > 0,

(2.1) P
(∣∣∣∣ 1n n∑

i=1

∞∑
k=1

zik log pk −
∞∑
k=1

pk log pk

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

2Cr/(
√
πr2) + 2ϵ/r

)
.

Proof. For |λ| < r,

(2.2) logMYi(λ) = log
( ∞∑
k=1

pλ+1
k

)
− λ

∞∑
k=1

pk log pk

¬
∞∑
k=1

pλ+1
k − 1− λ

∞∑
k=1

pk log pk

=
∞∑
k=1

pk exp(λ log pk)− 1− λ
∞∑
k=1

pk log pk

=
∞∑
k=1

(
pk + λpk log pk +

∞∑
m=2

1

m!
λmpk(log pk)

m

)
− 1− λ

∞∑
k=1

pk log pk,

where the inequality follows from log x ¬ x− 1 for x > 0.
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For m ­ 2, it is easy to check that the minimum of prk(log pk)
m on [0, 1]

when m is an odd number, and the maximum when m is an even number, are both
achieved at e−m/r. This can be verified by comparing the function value at the
unique stationary point within (0, 1) with the values at the boundaries. Here we use
the convention qr(log q)m = 0 at q = 0 as before, which ensures the continuity of
the function on [0, 1], as limq→0+ qr(log q)m = 0.

Therefore, for m ­ 2,∣∣∣∣ 1

m!
λmpk(log pk)

m

∣∣∣∣ = p1−rk

1

m!
|λ|m|prk(log pk)m|(2.3)

¬ p1−rk

1

m!
|λ|me−m

(
m

r

)m

¬ p1−rk

1

m!
(|λ|/r)m m!√

2πm

¬ p1−rk

(
|λ|
r

)m 1

2
√
π
,

where the first inequality is obtained by replacing |prk(log pk)m| with its maximum
and the second inequality follows from Stirling’s formula (see [11] for example):

m! ­
√
2πm

(
m

e

)m

for m ­ 1.

It follows that for |λ| < r,∣∣∣∣ ∞∑
m=2

1

m!
λmpk(log pk)

m

∣∣∣∣ ¬ ∞∑
m=2

∣∣∣∣ 1

m!
λmpk(log pk)

m

∣∣∣∣
¬ p1−rk

∞∑
m=2

(
|λ|
r

)m 1

2
√
π
= p1−rk

λ2

r2
1

1− |λ|/r
1

2
√
π
,

and
∞∑
k=1

∣∣∣∣ ∞∑
m=2

1

m!
λmpk(log pk)

m

∣∣∣∣ ¬ Cr
λ2

r2
1

1− |λ|/r
1

2
√
π
.

Since the three terms under the first sum in the last line of (2.2) all converge
absolutely for |λ| < r, one can take the sum term by term. Therefore, for |λ| < r,

logMYi(λ) ¬
∞∑
k=1

∣∣∣∣ ∞∑
m=2

1

m!
λmpk(log pk)

m

∣∣∣∣ ¬ Cr
λ2

r2
1

1− |λ|/r
1

2
√
π
,

and

(2.4) MYi(λ) ¬ exp

(
Crλ

2

r2
1

1− |λ|/r
1

2
√
π

)
.
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The second part follows from a standard argument using the Chernoff bound,
which can be found in [14, Chapter 2]. We give the details for completeness. For
t > 0 and 0 < λ < r,

P
( n∑
i=1

Yi ­ t
)
= P(eλ

∑n
i=1 Yi ­ eλt) ¬

∏n
i=1MYi(λ)

eλt

¬ exp

{
nCrλ

2

r2
1

1− |λ|/r
1

2
√
π
− λt

}
,

where the first inequality is Markov’s inequality and the second inequality follows
from (2.4). By setting

λ =
t

nCr/(
√
πr2) + t/r

∈ (0, r),

we obtain

P
( n∑
i=1

Yi ­ t
)
¬ exp

(
− t2

2nCr/(
√
πr2) + 2t/r

)
.

The left tail bound can be derived similarly by setting λ = − t
nCr/(

√
πr2)+t/r

.
Therefore,

P
(∣∣∣ n∑

i=1

Yi

∣∣∣ ­ t
)
¬ 2 exp

(
− t2

2nCr/(
√
πr2) + 2t/r

)
.

Finally, letting t = nϵ, we get

P
(∣∣∣ 1

n

n∑
i=1

Yi

∣∣∣ ­ ϵ
)
¬ 2 exp

(
− nϵ2

2Cr/(
√
πr2) + 2ϵ/r

)
. ■

Theorem 2.1 can be generalized to {zi}ni=1 with independent but non-identical
distributions. Let pik = P(zik = 1) be the probability that the ith observation
belongs to category k, and−

∑∞
k=1 pik log pik be the entropy of zi. In addition,

redefine Yi and MYi(λ) accordingly. We have the following result for non-identical
distributions:

COROLLARY 2.1. If there exists 0 < r < 1 such that

∞∑
k=1

p1−rik ¬ Cr,i <∞, i = 1, . . . , n,

then for |λ| < r,

MYi(λ) ¬ exp

(
Cr,iλ

2

r2
1

1− |λ|/r
1

2
√
π

)
.
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Furthermore, for all ϵ > 0,

P
(∣∣∣∣ 1n n∑

i=1

∞∑
k=1

(zik − pik) log pik

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

2
∑n

i=1Cr,i/(n
√
πr2) + 2ϵ/r

)
.

The proof is the same as that of Theorem 2.1.

3. DETERMINING THE CONSTANTS IN THE BOUND

The radius of convergence r in (2.3) and the upper bound Cr for
∑∞

k=1 p
1−r
k are

the constants to be determined if one wants to use (2.1) as an effective upper bound
for a given distribution {pk}k­1.

We first determine the types of distributions and the range of r that can make∑∞
k=1 p

1−r
k converge. Intuitively speaking, for distributions that satisfy Assump-

tion 1, the tail of {pk}k­1 cannot be too heavy. We make the above statement
precise in the following proposition.

PROPOSITION 3.1. The distribution {pk}k­1 satisfies Assumption 1 if the tail
of {pk}k­1 is lighter than or on the same order as a discrete power-law distri-
bution; conversely, Assumption 1 cannot be satisfied if the tail is heavier than all
power-law distributions. Specifically:

(i) If
lim
k→∞

pk
k−α

= 0 for all α > 1,

then
∞∑
k=1

p1−rk <∞ for all 0 < r < 1.

(ii) If
0 < lim inf

k→∞

pk
k−α
¬ lim sup

k→∞

pk
k−α

<∞ for some α > 1,

then
∞∑
k=1

p1−rk <∞ if and only if 0 < r <
α− 1

α
.

(iii) If
lim
k→∞

pk
k−α

=∞ for all α > 1,

then
∞∑
k=1

p1−rk =∞ for all 0 < r < 1.
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Proof. Recall that
∑∞

k=1 k
−β converges for β > 1, and diverges for β ¬ 1.

Statement (i) is obvious by taking α > 1/(1− r). Statement (ii) is also obvious by
noticing that the assumption implies that there exist positive constants a1, a2 such
that a1k−α ¬ pk ¬ a2k

−α for sufficiently large k. We prove (iii) by contradiction.
If there exists 0 < r < 1 such that

∑∞
k=1 p

1−r
k <∞, then

lim inf
k→∞

p1−rk

k−1
= 0.

This implies
lim inf
k→∞

pk
k−1/(1−r)

= 0,

which contradicts the assumption since 1/(1− r) > 1. ■

Proposition 3.1 implies that there is a wide class of discrete distributions satis-
fying Assumption 1, including the most commonly used ones such as the Poisson
distribution, the negative binomial distribution, and the power-law distribution it-
self. The class even contains certain discrete random variables that do not have
finite expectations. In fact, if X follows a discrete power-law distribution with
1 < α ¬ 2 then E[X] = ∞ since

∑∞
k=1 k

−(α−1) diverges. But such distributions
satisfy Assumption 1 by Proposition 3.1(ii).

REMARK 3.1. It may be surprising, at first glance, to get an exponential decay
bound for a power-law distribution, which itself is heavy-tailed. But note that (2.1)
is a concentration bound for logP (X), not for X . The log-likelihood logP (X)
is typically better-behaved than X that takes values on non-negative integers and
follows a power-law distribution. For example, the MGF of X is infinite if X fol-
lows a power-law distribution while the MGF of logP (X) can be finite. This phe-
nomenon can be explained by noticing that− log(k−α) grows much slower than k.

Finally, we discuss how to compute Cr after r is determined by Proposition
3.1. In practice, one can compute the partial sum of

∑∞
k=1 p

1−r
k until the incre-

ment is negligible. The value obtained in this way, however, is a lower bound for∑∞
k=1 p

1−r
k as in principle, the tail behavior cannot be predicted by a finite number

of terms2.
If the tail of {pk}k­1 is dominated by a power-law distribution, we propose a

method that can compute an upper bound for
∑∞

k=1 p
1−r
k at any tolerance level.

Specifically, the next proposition shows how to compute an upper bound Cr for∑∞
k=1 p

1−r
k with |

∑∞
k=1 p

1−r
k −Cr| smaller than a pre-specified tolerance level if

we find k0 such that pk ¬ c0k
−α for k > k0. Note that such a k0 exists if {pk}k­1

satisfies the condition in (i) or (ii) in Proposition 3.1.

2This issue is minor in practice especially when pk drops exponentially. The series
∑∞

k=1
p1−r
k

converges fast in this case. There is nothing wrong with taking the partial sum until the increment is
negligible. The method in Proposition 3.2 is useful to someone who needs a rigorous upper bound.
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PROPOSITION 3.2. Suppose k0 is a positive integer such that pk ¬ c0k
−α for

a certain α > 1 and all k > k0, where c0 > 0. Pick r such that 0 < r < (α−1)/α.
For all ϵ > 0, let

k1 = max

{
k0,

⌈(
ϵ(α(1− r)− 1)

c1−r0

)−1/[α(1−r)−1]⌉}
,

where ⌈·⌉ indicates rounding up to the next integer. Then

Cr =
k1∑
k=1

p1−rk + ϵ

satisfies

0 ¬ Cr −
∞∑
k=1

p1−rk ¬ ϵ.

Proof. We only need to bound the tail probability for k > k1:

∞∑
k=k1+1

p1−rk ¬ c1−r0

∞∑
k=k1+1

k−α(1−r)

= c1−r0

∞∑
k=k1

k+1∫
k

(k + 1)−α(1−r) dx

¬ c1−r0

∞∫
k1

x−α(1−r) dx

=
c1−r0

α(1− r)− 1
k
−(α(1−r)−1)
1 ¬ ϵ,

where the first inequality holds because pk ¬ c0k
−α for all k > k0 and the last

inequality holds because

k1 ­
⌈(

ϵ(α(1− r)− 1)

c1−r0

)−1/[α(1−r)−1]⌉
.

Therefore,

∞∑
k=1

p1−rk =
k1∑
k=1

p1−rk +
∞∑

k=k1+1

p1−rk ¬
k1∑
k=1

p1−rk + ϵ. ■

Proposition 3.2 provides a general method for estimating the upper bound of∑
k p

1−r
k . For power-law, Poisson, and negative binomial distributions, we offer

more explicit estimates of the upper bound of
∑

k p
1−r
k below.
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PROPOSITION 3.3. For pk = k−α/ζ(α) (α > 1, k = 1, 2, . . . ), and all r such
that 0 < r < (α− 1)/α,

∞∑
k=1

p1−rk =
1

[ζ(α)]1−r
ζ(α(1− r)),

where ζ(α) is the Riemann zeta function.

The proof is straightforward.

PROPOSITION 3.4. For pk = e−µµk/k! (µ > 0, k = 0, 1, 2, . . . ), all r such
that 0 < r < 1, and all integers k0 such that k0 > eµ,

∞∑
k=0

p1−rk

¬ e−µ(1−r)
[
k0−1∑
k=0

(
µk

k!

)1−r
+ (2πk0)

− 1
2
(1−r)

(
eµ

k0

)k0(1−r) 1

1− (eµ/k0)1−r

]
.

Proof. We have

∞∑
k=0

p1−rk

¬ e−µ(1−r)
[
k0−1∑
k=0

(
µk

k!

)1−r
+
∞∑

k=k0

µk(1−r)(2πk)−
1
2
(1−r)

(
e

k

)k(1−r)]
¬ e−µ(1−r)

[
k0−1∑
k=0

(
µk

k!

)1−r
+ (2πk0)

− 1
2
(1−r)

∞∑
k=k0

(
eµ

k0

)k(1−r)]
= e−µ(1−r)

[
k0−1∑
k=0

(
µk

k!

)1−r
+ (2πk0)

− 1
2
(1−r)

(
eµ

k0

)k0(1−r) 1

1− (eµ/k0)1−r

]
. ■

PROPOSITION 3.5. Let X follow a negative binomial distribution, i.e.,

pk =

(
k + s− 1

k

)
(1− p)kps, k = 0, 1, 2, . . . ,

where 0 < p < 1 and s is a positive integer. Then for all r such that 0 < r < 1, we
have

∞∑
k=0

p1−rk ¬
(

p

1−
√
1− p

)s(1−r) 1

1− (1− p)(1−r)/2
.

Proof. The MGF of X is

E[eλX ] =

(
p

1− (1− p)eλ

)s

for λ < − log(1− p).



Bernstein inequality for categorical variables with infinitely many levels 11

By Markov’s inequality, for 0 < λ < − log(1− p),

pk ¬ P(X ­ k) = P(eλX ­ eλk) ¬ E[eλX ]

eλk
=

(
p

1− (1− p)eλ

)s

e−λk.

Letting λ = −1
2 log(1− p), we obtain

pk ¬
(

p

1−
√
1− p

)s

(1− p)k/2.

Therefore, for 0 < r < 1,

∞∑
k=0

p1−rk ¬
(

p

1−
√
1− p

)s(1−r) ∞∑
k=0

(1− p)k(1−r)/2

=

(
p

1−
√
1− p

)s(1−r) 1

1− (1− p)(1−r)/2
. ■

4. UNIFORM CONCENTRATION INEQUALITY FOR CATEGORICAL VARIABLES WITH
A FINITE NUMBER OF LEVELS

The same technique used in the proof of Theorem 2.1 can be applied to the case
of categorical variables with a finite number of levels to obtain a uniform concen-
tration inequality with the same optimal rate as in [16], but with a much simpler
proof. Let z1, . . . , zn be independent categorical variables with K categories and
pik = P (zik = 1) for i = 1, . . . , n, k = 1, . . . ,K, and pi = (pi1, . . . , piK)

for i = 1, . . . , n. The entropy of zi is defined as −
∑K

k=1 pik log pik. Finally, let

C = {q = (q1, . . . , qK) : 0 < qk < 1, k = 1, . . . ,K,
∑K

k=1 qk = 1} be the con-
straint on p1, . . . ,pn. We have the following uniform concentration inequalities:

THEOREM 4.1. For 2 ¬ K ¬ 7 and all ϵ > 0,

sup
p1,...,pn∈C

P
(∣∣∣∣ 1n n∑

i=1

K∑
k=1

(zik − pik) log pik

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

2K/
√
π + 2ϵ

)
.

For K ­ 8 and all ϵ > 0,

sup
p1,...,pn∈C

P
(∣∣∣∣ 1n n∑

i=1

K∑
k=1

(zik − pik) log pik

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

e2(logK)2/(2
√
π) + ϵ logK

)
.
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Proof. Let Yi =
∑K

k=1(zik−pik) log pik. Similar to the proof of Theorem 2.1,
for 0 < r ¬ 1 and |λ| < r,

logMYi(λ) = log
( K∑
k=1

pλ+1
ik

)
− λ

K∑
k=1

pik log pik

¬
K∑
k=1

∞∑
m=2

p1−rik

(
|λ|
r

)m 1

2
√
π
=

( K∑
k=1

p1−rik

)λ2

r2
1

1− |λ|/r
1

2
√
π
.

Since p1−rik is a concave function of pik for 0 < r ¬ 1, by Jensen’s inequality,

K∑
k=1

p1−rik = K

∑K
k=1 p

1−r
ik

K
¬ K

(∑K
k=1 pik
K

)1−r
= Kr.

Therefore, for 0 < r ¬ 1 and |λ| < r,

MYi(λ) ¬ exp

(
Kr λ

2

r2
1

1− |λ|/r
1

2
√
π

)
.

Similar to the proof of Theorem 2.1,

P
(∣∣∣∣ 1n n∑

i=1

Yi

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

2Kr/(
√
πr2) + 2ϵ/r

)
for 0 < r ¬ 1.

Finally, we pick r that minimizes Kr/r2 over r ∈ (0, 1]. For 2 ¬ K ¬ 7, we take
r = 1, which gives

P
(∣∣∣∣ 1n n∑

i=1

Yi

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

2K/
√
π + 2ϵ

)
.

For K ­ 8, we take r = 2/logK < 1, which gives

P
(∣∣∣∣ 1n n∑

i=1

Yi

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

e2(logK)2/(2
√
π) + ϵ logK

)
. ■

REMARK 4.1. In [16] we proved that for sufficiently small positive ϵ and
K ­ 5,

sup
p1,...,pn∈C

P
(∣∣∣∣ 1n n∑

i=1

K∑
k=1

(zik − pik) log pik

∣∣∣∣ ­ ϵ

)
¬ 2 exp

(
− nϵ2

4(logK)2

)
,

and the rate (logK)2/n = o(1) is optimal. Theorem 2.1 achieves the same optimal
rate with a better constant.
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