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Abstract. We prove that quantiles are best predictors in a special metric.
The best predictor turns out to coincide with the notions of generalized arith-
metic mean, exponential barycenter and certainty equivalent. We also show
that the computation of tail value at risk (TVaR) reduces to the computation
of a quantile with a higher level of confidence. This point of view makes the
analysis of the statistical properties of TVaR easier.
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1. INTRODUCTION AND PRELIMINARIES

It is well known that the population mean is the best predictor of a square in-
tegrable random variable in the Euclidean (L2) norm when there is no other in-
formation available. When there is information available, provided by a collection
(σ-algebra) of events, the best predictor of a random variable is its conditional
expectation given the σ-algebra. When the distance between random variables is
measured by the L1 norm, the best predictor is the median. The question that comes
up is: What about the other quantiles? Are they best predictors in some norm?

Here we present a systematic approach to describing quantiles as best predic-
tors. Our proposal consists in defining an appropriate metric on the range of the
random variable and then finding the best predictor of the random variable in that
metric. The basic idea behind the change of variables was proposed by Bernoulli
in the 18th century. It is a key concept in economics where it is known as the util-
ity function, and the best predictor is the certainty value. It reappeared under the
name of generalized or extended arithmetic mean in the first quarter of the 20th
century (see [2] or [4] for example). It was considered in the statistical literature
in [1], where it is called a generalized mean, and its applications to maximum like-
lihood estimation are studied. We should also point out that this work is a distant
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relative to the work in [9] or [7], although the approach and point of view differ
considerably.

We also consider the conditional expectation in the new metric, and apply it
to compute a quantity that is essential in risk management, where it is known as
Expected Shortfall (ES) or Tail Value at Risk (TVaR). These notions coincide for
continuous random variables, which is the case that we consider here. For more on
this matter, see [10] for example.

In the remainder of this section, we establish necessary notations and recall
some preliminary results. In Section 2 we characterize quantiles and tail condi-
tional expectations as best predictors in a non-Euclidean metric. In Section 3 we
provide two examples, corresponding to two possible metrics. In the second ex-
ample, we explicitly display the result of the computation of the TVaR as a quantile
at a higher level of confidence for a few typical distributions used in risk manage-
ment and reliability.

1.1. Background notations and results. The standard setup includes some com-
plete probability space (Ω,F , P ) on which our random variables are defined. As
usual, E[X] and E[X|G] denote, respectively, the expected value of X and the con-
ditional expectation of X given G ⊂ F . We consider only continuous random vari-
ables that have strictly increasing, continuous cumulative distribution functions.
We use F (x) to denote the distribution function of X . Denote by I = (a, b) the
range of X , where −∞ ¬ a and b ¬ +∞. Let u : I → R be a strictly monotone,
continuous function, with range u(I).

If X,Y are random variables such that u(X), u(Y ) are square integrable, the
du-distance between them is defined by

(1.1) du(X,Y ) =
(
E[(u(X)− u(Y ))2]

)1/2
.

At this point, we mention that this distance is a geodesic distance, in a Hessian
metric obtained from Bregman divergence. The connection is established in [8],
where some comparison results are obtained.

DEFINITION 1.1. The number Eu[X] that minimizes the distance (1.1) will be
called the du-mean of X or the generalized u-mean of X , or simply the generalized
mean of X.

The existence of Eu[X] was discussed in [1] for finitely valued variables, but
the proof carries over to the general case.

THEOREM 1.1. Let X be a random variable such that u(X) is square inte-
grable. The best predictor of X in du-distance is the number Eu[X] closest to X
in the du-distance, and is given by the following generalized arithmetic mean:

(1.2) Eu[X] = u−1
(
E[u(X)]

)
.

Here we add that this quantity coincides with the exponential barycenter studied
in [6] and the generalized mean studied in [12]. It also coincides with the certainty



A predictive approach to quantiles 3

equivalent, which plays a key role in economics and decision theory (see [5] for
example).

Intuitively, the best predictor of X , in the du-distance, given the information
provided by a sub-σ-algebra G should be u−1

(
E[u(X)|G]

)
. Let us verify it.

THEOREM 1.2. Let G be a sub-σ-algebra of F , and let X be such that u(X)
is square integrable. There exists a unique (up to P -null-sets) square integrable,
G-measurable random variable, denoted by Eu[X|G], that realizes

inf {du(X,Y ) | Y ∈ G, E[u(Y )2] <∞}.

It is given by

(1.3) Eu[X|G] = u−1
(
E[u(X)|G]

)
.

Proof. The proof is essentially as in [11]. Note that any G-measurable, u(I)-
valued random variable can be written as u(Y ) with Y being an I-valued random
variable. Let ξ = u−1(E[u(X)|G]). Then, for any G-measurable Y we have

d2u(X, ξ) = E[(u(X)− u(Y ))2] = E[(u(X)− u(ξ))2] + E[(u(ξ)− u(Y ))2],

which is minimized when u(Y ) = u(ξ)⇔ Y = ξ almost surely. ■

To take care of the case where u(X) is integrable but not square integrable, we
follow a modification of the steps of the proof, say of [11, Theorem 23.4], plus
the following comments to obtain the corresponding version of Theorem 1.2. Note
that we want to predict u(X) by random variables that are u(I)-valued, because
E[u(X)H] = 0 when the support of H does not intersect u(I).

THEOREM 1.3. Let G be a sub-σ-algebra of F , and let X be such that u(X)
is integrable, but not necessarily square integrable. Then there exists a unique (up
to P -null-sets) G-measurable random variable, denoted by Eu[X|G], such that for
any bounded, G-measurable random variable H we have

(1.4) E[u(X)H] = E[u(Eu[X|G])H].

Proof. The proof follows the standard pattern. On the one hand, from [11, The-
orem 23.4] it follows that when u(X) is integrable, the conditional expectation
E[u(X)|G] satisfies

E[u(X)H] = E[E[u(X)|G]H]

for any bounded, G-measurable random variable H . On the other hand, consider-
ing u(I)-valued random variables, there exists a G-measurable random variable V
such that u(V ) is integrable and

E[u(X)H] = E[u(V )H]
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for any bounded, G-measurable random variable H . Therefore, from the unique-
ness part it follows that V = u−1(E[u(V )|G]). ■

Except for linearity in X , this notion satisfies the important properties of con-
ditional expectation; in particular, if the conditioning σ-algebra is the trivial σ-
algebra F0 = {∅,Ω} then Eu[X|F0] = E[X].

The following remark will play a role in the description of the confidence inter-
vals of the best predictor. The prediction error in the transformed coordinates (or
in the du-distance) is given by

(1.5) σ2
u(X) = σ2(u(X)).

The following is standard and it is recalled here to establish notations.

DEFINITION 1.2. With the notations introduced above, for 0 < α < 1, we put

(1.6) F−1(α) = q(α).

Finally, we state and examine an essential assumption. Denote by hp(s)
a strictly monotone function. Since hp can be either increasing or decreasing, we
require that either hp(0) = 0 and hp(1) = 1, or hp(0) = 1 and hp(1) = 0. This
choice allows us to sweep many integrability issues under the carpet. With (1.2) in
mind, the assumption is the following.

ASSUMPTION 1.1. Let J ⊂ R be some open interval. For each p ∈ J let
hp : [0, 1] → [0, 1] be a continuous, strictly monotone function that maps end-
points to end-points. We suppose that the mapping

p 7→ h−1p

( 1∫
0

hp(t) dt
)

is a bijection from J to (0, 1).

Note that if we consider coordinates hp on [0, 1], and the metric defined by
dhp as in (1.1), then, according to Theorem 1.1, the assumption asserts that for
any 0 < α < 1, there is a p ∈ R such that Ehp [U ] = α, where U is uniformly
distributed in [0, 1]. So, the import of the assumption will be that any quantile can
be realized as a generalized expectation.

The rest of the paper is organized as follows. In Section 2 we present the basic
characterization of quantiles as best predictors, that is, we show that for an ap-
propriate choice of a parametric change of variables, the best predictor of X in
the new distance is a quantile. Then we relate the tail conditional expectation to a
quantile at a large confidence level. In Section 3 we consider two examples: first
a change of variables inspired by the interpretation of hp as a utility function, and
then a different change of variables plus a numerical computation. In both cases
we examine in detail the computation of the tail conditional expectation, and we
include a short numerical example.
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2. QUANTILES AND TAIL EXPECTED VALUES AS BEST PREDICTORS

The main result here is the following.

THEOREM 2.1. Let X be a random variable with a strictly positive density, and
put F (x) = P (X ¬ x). Let hp(s) be as in Assumption 1.1 and define up(x) =
hp(F (x)). Let 0 < α < 1 and let p ∈ I be such that

h−1p

( 1∫
0

hp(t) dt
)
= α.

Then the q(α) quantile is the best predictor of X in the dup-distance given by (1.1),
that is,

(2.1) Eup [X] = u−1p

(
E[up(X)]

)
= q(α).

Proof. Theorem 1.1 asserts that

Eup [X] = u−1p

(
E[up(X)]

)
= F−1

(
h−1p (E[up(X)])

)
.

Since

E[up(X)] =
∫
R
hp(F (x)) dF (x) =

1∫
0

hp(s) ds,

invoking Assumption 1.1 we obtain Eup [X] = q(α), as claimed. ■

In other words, for each 0 < α < 1, there is a p ∈ R such that the α-quantile
of X is the best predictor of X in the dup-distance (1.1).

2.1. Two consistency issues. A natural question in the context of Theorem 1.1 is:
How does the best predictor depend on the choice of the family hp? Consider
two possible parameterized coordinate systems defined by hp, gq : R → R, both
satisfying Assumption 1.1. The result is the following.

THEOREM 2.2. For p ∈ J1 ⊂ R and q ∈ J2 ⊂ R, let hp, gq : R → (0, 1)
be two families of continuous bijections, both satisfying Assumption 1.1. Then, for
each p ∈ J1 there is a q ∈ J2 (and conversely, for each q ∈ J2 there is a p ∈ J1)
such that

gp ◦ h−1p

(
E[hp(U)]

)
= hp ◦ g−1q

(
E[gp(U)]

)
.

For p ∈ J1 set α = h−1p (E[hp(U)]). Then according to Assumption 1.1, there
is a q ∈ J2 such that gp ◦ h−1p (E[hp(U)]) = hp ◦ g−1q (E[gp(U)]).

Sometimes it is of interest to express random variables in a scale, or a system
of units, different from their natural units. Think of decibels or the Richter scale
for example. In this case, we have to relate the distribution functions of the random
variable in the different units to each other, as well as to other quantities of interest.
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Let K : R → R be a bijection and let Y = K(X), where X is a continuous
random variable with (strictly increasing) distribution function F (x). Then clearly
the distribution G(y) of Y satisfies G = F ◦K−1. Similarly, for 0 < α < 1, the α
quantiles qX(α) and qY (α) are related by

(2.2) qY (α) = K(qX(α)).

Let us verify that this is consistent with the predictive approach.

THEOREM 2.3. Let X be a random variable with a strictly positive density,
and put F (x) = P (X ¬ x). Let K : R → R be a continuous bijection and let
Y = K(X).

Let hp be as in Assumption 1.1 and define up(x) = hp(F (x)). Let 0 < α < 1
and p ∈ I be such that

h−1p

( 1∫
0

hp(t) dt
)
= α ⇔ Eup [X] = qX(α).

Let vp(y) = hp(G(y)). Then

(2.3) qY (α) = K(qX(α)) = Evp [Y ].

Proof. Combining Theorem 2.1 and Assumption 1.1 we obtain Eup [X] =
qX(α). Note that from (2.2) we obtain

qY (α) = K ◦u−1p (E[up(X)]) = K ◦F−1◦h−1p E[hp◦F ◦K−1◦K(X)] = Evp [Y ]

after bringing in the definition of vp. ■

This asserts that the predictive characterization of the quantiles of a random
variable is consistent with the possible choice of units to measure it. An interesting
variation on this theme goes as follows.

2.2. Tail conditional expectations. Suppose that X is a positive, continuous ran-
dom variable, and that a confidence level 0 < α < 1 has been selected. Let p ∈ R
be such that Assumption 1.1 holds. Then according to Theorem 2.1, we know that
Eup [X] = q(α). Setting F (X) = U , we have

{X > q(α)} = {U > α}.
Therefore, invoking Theorem 1.2, we can establish the following result.

THEOREM 2.4. Suppose that X is a positive random variable with a strictly
increasing distribution function F . For p ∈ J related to α as in Assumption 1.1,
and if G is the σ-algebra generated by the event {X > q(α)}, then on the set
{X > q(α)} we have

(2.4) Eup [X | X > q(α)] = F−1 ◦ h−1p

(
1

1− α
E[hp(U);U > α]

)
= F−1 ◦ h−1p

(
1

1− α

1∫
α

hp(t) dt

)
.
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The following approximation is interesting.

COROLLARY 2.1. Under the assumptions and notations of Theorem 2.4 we
have

(2.5) Eup [X | X > q(α)] > q(α).

Furthermore, if hp is strictly increasing and both hp and F have two continuous
derivatives, then, for α close to 1,

(2.6) Eup [X | X > q(α)] = q(α) +
1

2
K(α)(1− α) +O((1− α)2).

Here K(α) = 1/f(q(α)) and f(x) = F ′(x) is the probability density of X.

Proof. Since Eup [X | X > q(α)] = u−1p (E[up(X) | X > q(α)]), we have

E[up(X) | X > q(α)] =
1

1− α

∞∫
q(α)

hp(F (X)) dF (x) =
1

1− α

1∫
α

hp(t) dt

= hp(α) +
1

1− α

1∫
α

(hp(t)− hp(α)) dt.

To bound the second term, denote by B a bound for h′p on [0, 1] and note that

1

1− α

1∫
α

(hp(t)− hp(α)) dt+
1

1− α

1∫
α

( t∫
α

h′p(s) ds
)
dt

=
1

1− α

1∫
α

h′p(s)
( 1∫

s

dt
)
ds

=
1

2
h′p(α)(1− α) +

1

1− α

1∫
α

(h′p(s)− h′p(α))(t− s) ds.

The last term is bounded by 2B(1− α).
Now, bring in the fact that u−1p (hp(α)) = q(α) and make use of the Taylor

expansion up to the second order to obtain

Eup [X | X > q(α)] = q(α) +
1

2f(q(α))
(1− α) +O((1− α)2),

as asserted. ■

The approximate calculation in (2.6) is particularly interesting for risk man-
agement. A quantity of interest there is the expected shortfall or TVaR, which is
defined as the expected loss beyond the value at risk, or VaR, which is given by
q(α). For the use of this concept in risk management, consider [10].
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3. TWO WORKED OUT EXAMPLES

3.1. First example. Consider first the parametric family of functions hp : (0, 1)→
(0, 1), p ∈ (−∞,+∞), given by

(3.1) hp(s) =


1− e−ps

1− e−p
for p ̸= 0,

s for p = 0.

The typical cases look as in Figure 1

Figure 1. Typical hp(u) with u ∈ [0, 1]

To begin with, we have:

PROPOSITION 3.1. Let {hp(s) : p ∈ R} be the family of functions defined in
(3.1). Then

(1) hp → 1 pointwise and boundedly as p→∞,

(2) hp → 0 pointwise and boundedly as p→ −∞.

If we put K(p) = (1− e−p)−1 for p ∈ R\{0}, then

I(p) =
1∫
0

hp(s) ds = K(p)− 1

p
for p ̸= 0 and I(0) =

1

2
.

Then

(3.2)

I(p)→ 1 as p→∞,

I(p)→ 1

2
as p→ 0,

I(p)→ 0 as p→ −∞.

Clearly, p 7→ I(p) is continuous and increasing.
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Note that even though K(p) − 1
p cannot be evaluated at p = 0, nevertheless

K(p) − 1
p → 1/2 as p → 0, therefore, I(p) = K(p) − 1

p is indeed continuous at
p = 0. This can be easily seen, for example, by writing it as ((1− e−p)−1 − 1)/p
and using L’Hôpital’s rule. Next, differentiate the numerator and the denominator
with respect to p, multiply and divide by p2 to obtain

p2

(1− e−p)2
1− e−p − pe−p

p2
.

Now, expand the exponential up to order 2 to complete the verification.
It is easy to verify that h−1p (t) = −1

p ln(1 − t/K(p)) for t ∈ (0, 1). Clearly,
t 7→ h−1p (t) increases continuously from 0 to 1. Therefore, for p ̸= 0,

h−1p

( 1∫
0

hp(s) ds
)
= −1

p
ln

(
1− e−p

p

)
also increases continuously from 0 to 1 as p ranges over R.

Thus, the assumptions in Theorem 2.1 are met and we gather the comments
made above as:

THEOREM 3.1. With the notations introduced above, for every α ∈ (0, 1) \
{1/2} there is a p ∈ R \ {0} such that

(3.3)
1

p
ln

(
p

1− e−p

)
= α.

Let up(x) = hp(F (x)) with hp as in (3.1). Then

(3.4) Eup [X | X > q(α)] = F−1
(
α+ ln

[(
(1− α)p

1− e−(1−α)p

)1/p])
.

The first assertion follows from a simple computaion. To verify the second, let
up(x) = hp(F (x)) with hp be as in (3.1). Then, according to Theorem 2.1, the
best predictor of X in the dup-distance is given by

Eup [X] = F−1
(
1

p
ln

(
p

1− e−p

))
= F−1(α) = q(α).

Now, from (2.4) and some arithmetic manipulations, using (3.3) along the way, we
also have

(3.5) Eup [X | X > q(α)] = F−1
(
1

p
ln

(
(1− α)p

e−αp − e−p

))
= F−1

(
ln

[
eα

(
(1− α)p

1− e−(1−α)p

)1/p])
= F−1

(
α+ ln

[(
(1− α)p

1− e−(1−α)p

)1/p])
.



10 H. Gzyl

We mention as well that if p = 0 (i.e. h0(s) = s), then u0(x) = F (x), therefore
Eu0 [X] = F−1(1/2) = q(1/2). Thus, the median is a generalized best predictor
in the distance associated to the change of variables defined by the distribution
function.

Since each hp maps [0, 1] onto [0, 1] bijectively, instead of hp we might have
started with gq(t) = N(q) ln(1−qt), where N(q) = (ln(1−q))−1, the relationship
between the parameters being q = 1− e−p.

3.2. Second example. For this example we consider hp(t) = tp with p ∈ (0,∞).
In this case, Assumption 1.1 amounts to saying that given 0 < α < 1, the equation
(p+1)−1/p = α has a solution in p. That such a p can be determined is clear from
the fact that the map p 7→ (p + 1)−1/p from (−1,∞) → (0, 1) is continuous and
strictly increasing, tends to 0 as p→ −1 and to 1 as p→∞. Even though this map
is defined for every p in that range, the function u(x) = F p(x) is just a constant
for p = 0. Then (p + 1)−1/p → e−1 as p → 0. The corresponding quantile has to
be obtained as a limit. When p crosses level 0, the function u goes from increasing
to decreasing (or vice versa), a kind of bifurcation in the function space.

In the current example, the quantile as expected value in the dup-metric is

Eup [X] = F−1
(
(E[F p(X)])1/p

)
= F−1

((
1

p+ 1

)1/p)
= F−1(α) = q(α).

Again, to study tail conditional values, there are two separate cases of interest in
risk management: The variable X may denote returns, which are usually assumed
to range in (−∞,∞). In this case, the interest is in the values in the left tail of the
distribution. Sometimes, e.g. in insurance or in reliability theory, X is supposed
to be strictly positive and denotes pure losses or costs. In this case, the interest is
in values in the right tail of the distribution. The two definitions of interest go as
follows.

DEFINITION 3.1. When X ranges in (−∞,∞) the value at risk (VaR) at con-
fidence level 0 < α < 1 is defined to be

VaRα(X) = −q(1− α) = − inf {x : F (x)  1− α}.

It is interpreted as the largest loss with probability 1−α. The sign is due to the fact
that one thinks of losses as positive numbers. In this case, P (X ¬ q(1 − α)) =
1− α.

When X is strictly positive, the corresponding definition is

VaRα(X) = q(α) = inf {x | F (x)  α}.

Here the probability of a loss larger than q(α) is P (X > q(α)) = 1− α.

We now use these definitions in conjunction with Theorem 2.4 when
hp(s) = sp. We have to consider two cases separately. When X assumes any
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value in (−∞,∞), for the purpose of risk management one is interested in
−Eup [X | X < q(1 − α)], and when X is strictly positive one is interested in
Eup [X | X > q(α)]. The first step in the computation of these quantities is as
follows:

E[F p(X) | X < q(1− α)] =
1

1− α

q(1−α)∫
−∞

F p(x) dF (x)

=
1

1 + p

F p+1(q(1− α))

(1− α)
,

E[F p(X) | X > q(α)] =
1

1− α

∞∫
q(α)

F p(x) dF (x)

=
1

1 + p

1− F p+1(q(α))

(1− α)
.

Using the fact that F (q(α)) = α, F (q(1− α)) = 1− α and (p+ 1)−1 = αp, the
above identities can be written as

E[F p(X) | X < q(1− α)] = αp (1− α)p+1

(1− α)
= αp(1− α)p,

E[F p(X) | X > q(α)] = αp 1− αp+1

(1− α)
.

Using Theorem 2.4, the expected losses beyond the VaR computed above are char-
acterized as a quantile with a larger level of confidence. The formal result is stated
as follows.

THEOREM 3.2. With the notations introduced above, the expected loss given
that it is larger than the VaR is given by

Eup [X | X < q(1− α)] = F−1
(
E[F p(X) | X < q(1− α)]

)1/p(3.6)

= F−1(α(1− α)),

Eu[X | X > q(α)] = F−1
(
E[F p(X) | X > q(1− α)]

)1/p(3.7)

= F−1
(
α

(
1− αp+1

1− α

)1/p)
.

3.2.1. Some numerical computations of VaR and TVaR. A short list of (α, p) values
near the end of the range is presented in Table 1. The case p = 1 corresponds to
α = 1/2, and we obtain a characterization of the median as the best predictor in a
different metric.

In the next table we list the arguments of F−1 for the right-hand side of (3.6)
and (3.7) for the values of α considered above. To compute the TvaR we need new
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Table 1. Pairs of a and p values up to three decimal places

α 0.01 0.05 0.1 0.9 0.95 0.99

p −0.989 −0.940 −0.863 33.520 85.578 605.730

Table 2. Values of the shifted levels of confidence

α RHS of (3.6) α RHS of (3.7)

0.01 0.099 0.90 0.963

0.05 0.0475 0.95 0.984

0.10 0.099 0.99 0.998

confidence levels. A list of such modified levels of confidence, corresponding to
confidence levels typical in risk analysis, is collected in Table 2.

Next we present an explicit numerical example. We have computed quantiles
of a few densities at the original level of confidence (α), and at the shifted level of
confidence (denoted below by α∗); see Table 2. From these, the values of VaR and
TVaR can be read off by changing the signs whenever appropriate. To compute the
quantiles listed below, a sample of size 100,000 was generated. The parameters of
several densities are displayed in Table 3:

Table 3. List of densities and their parameters

Density Parameters

Normal density µ = 10.000, σ = 5µ

Student-t: 3 degrees of freedom

Lognormal meanlog = 1.05, sdlog= 3×meanlog

Gamma shape= 500, scale= 100

Weibull shape= 500, scale= 8

In Table 4 we list the α-quantile for several levels of confidence typically used
in risk management.

Recall that if a random value takes negative values, and the lower quantile is
negative, VaR is obtained by changing its sign, to report losses as positive quanti-
ties.

We now know that to calculate the expected loss given that it is larger than VaR,
it suffices to compute a quantile at a shifted level of confidence. The new level of
confidence for a few standard levels of confidence used in risk analysis is given in
Table 2, and the corresponding quantiles for the same densities are listed in Table 5.

As commented above, when the random variable takes negative values, VaR
and TVaR are the negatives of the corresponding quantiles. Clearly, TVaR>VaR
in the examples.
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Table 4. Quantiles for the list of densities

α Normal Lognormal Gamma Student-T Weibull

1% −106441.67 0.0019878 4.492268 −4.571527 7.926742

5% −72430.71 0.0162146 4.637273 −2.361576 7.952440

10% −54716.53 0.0505959 4.715295 −1.647299 7.963973

90% 73463.80 161.7767644 5.288336 1.640524 8.013412

95% 91669.15 522.0316801 5.371384 2.386815 8.017688

99% 125341.32 4523.9659797 5.531109 4.588648 8.024608

Table 5. Shifted confidence levels and their quantiles

α∗ Normal Lognormal Gamma Student-t Weibull

0.9% −108006.81 1.559200e-03 4.487121 −4.744213 7.924012

4.75% −72885.06 1.437560e-02 4.631312 −2.401811 7.951761

9.8% −54392.05 4.717850e-02 4.711479 −1.653442 7.963614

96.3% 98841.60 8.123035e+02 5.407141 2.686339 8.019081

98.4% 117429.44 2.430261e+03 5.490509 3.773217 8.022600

99.8% 151822.82 2.730788e+04 5.664836 8.041184 8.028933

4. CONCLUDING REMARKS

There exist many ways of presenting quantiles as best predictors in metrics in-
duced by coordinate transformations on the range of random variables. The change
of variables is up to the modeler. The only restriction in our approach is that As-
sumption 1.1 holds. In particular, the two examples considered point to an interest-
ing conceptual issue. In our setup, given a number ξ in the range of the variable,
there is an α(ξ) such that F−1(α(ξ)) = ξ. Under Assumption 1.1, there is a p(ξ)
such that Eup(ξ)

[X] = ξ.
It is worth stressing that the fact that conditional expectation given some tail

events can be expressed as a quantile at a larger confidence level, makes it inter-
esting for risk analysts, especially because the error in estimating quantiles may be
easier to estimate than the error in estimating tail conditional expectations.
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