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2010 AMS Mathematics Subject Classification: Primary: 62G05;
Secondary: 62G20.

Key words and phrases: Complete consistency, complete conver-
gence rate, recursive density estimator, widely orthant dependent random
variable.

1. INTRODUCTION

The random variables in many statistical applications are assumed to be inde-
pendent. However, that is often not a very realistic assumption. Therefore, many
statisticians extended this condition to various dependence structures. In this paper,
we will consider a rather weak and applicable dependence structure, i.e., a widely
orthant dependence structure, the concept of which was first introduced by Wang
et al. [16] as follows.

DEFINITION 1.1. A finite set of random variables X1, X2, . . . , Xn is said to
be widely upper orthant dependent (WUOD) if there exists a finite real number
gU (n) such that for all finite real numbers xi, 1 ¬ i ¬ n,

(1.1) P (X1 > x1, X2 > x2, . . . , Xn > xn) ¬ gU (n)
n∏

i=1

P (Xi > xi).

A finite set of random variables X1, X2, . . . , Xn is said to be widely lower orthant
dependent (WLOD) if there exists a finite real number gL(n) such that for all finite
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real numbers xi, 1 ¬ i ¬ n,

P (X1 ¬ x1, X2 ¬ x2, . . . , Xn ¬ xn) ¬ gL(n)
n∏

i=1

P (Xi ¬ xi).(1.2)

If the setX1, X2, . . . , Xn is both WUOD and WLOD, then we say thatX1, X2, . . . ,
Xn are widely orthant dependent (WOD) random variables, and gU (n), gL(n) are
called dominating coefficients. A sequence of random variables {Xn, n  1} is
said to be WOD if every its finite subset is WOD.

With various dominating coefficients, the WOD structure contains many other
dependence structures. Wang et al. [16] presented some examples showing that
WOD random variables contain negatively dependent random variables, positively
dependent random variables, and some other classes of dependent random vari-
ables; moreover, they also presented some examples of WOD random variables
which do not satisfy these other dependence structures.

It can be easily checked that gU (n)  1 and gL(n)  1. If both (1.1) and (1.2)
hold with gU (n) = gL(n) = M for all n  1, where M is a positive constant, then
the random variables are called END, which was introduced by Liu [9]. If M = 1
for all n  1, then the random variables are called NOD, which was introduced by
Lehmann [4] (cf. also Joag-Dev and Proschan [3]). As is well known, negatively
associated (NA) random variables are NOD. Furthermore, Hu [2] pointed out that
negatively superadditive dependent (NSD, for short) random variables are NOD.
Hence, the class of WOD random variables includes independent sequences, NA
sequences, NSD sequences, NOD sequences and END sequences as special cases.
Thus, studying the limit behavior of WOD random variables is of general inter-
est. There are many results investigating the WOD random variables. For example,
Wang and Cheng [19] studied the basic renewal theorems for random walks with
widely dependent increments; Chen et al. [1] investigated the uniform asymptotics
for the finite-time ruin probabilities of two kinds of nonstandard bidimensional re-
newal risk models with constant interest forces and diffusion generated by Brow-
nian motions; Shen [14] established the Bernstein-type inequality for WOD ran-
dom variables with its application to nonparametric regression models; Shen [15]
studied the asymptotic approximation of inverse moments for a class of nonnega-
tive random variables including WOD random variables as a special case; Qiu and
Chen [12] obtained some results on complete convergence and complete moment
convergence for weighted sums of WOD random variables; Wang et al. [17] estab-
lished complete convergence for arrays of rowwise WOD random variables with
application to complete consistency for the estimator in a nonparametric regression
model based on WOD errors; Yang et al. [22] presented the Bahadur representation
of sample quantiles for WOD random variables, and so forth.

Estimating a probability density function is a fundamental problem in statis-
tics. Let {Xn, n  1} be a sequence of random variables with probability density
function f(x). Rosenblatt [13] and Parzen [11] introduced the following classical
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kernel estimator of f(x):

fn(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
.

Wolverton and Wagner [20] introduced the following recursive kernel estimator
of f(x):

(1.3) f̂n(x) =
1

n

n∑
i=1

1

hi
K

(
x−Xi

hi

)
,

where 0 < hn ↓ 0 are bandwidths and K is some kernel function. Note that (1.3)
can be computed recursively by

(1.4) f̂n(x) =
n− 1

n
f̂n−1(x) +

1

nhn
K

(
x−Xn

hn

)
.

This recursive property is particularly useful in large sample sizes since f̂n(x) can
be easily updated with each additional observation. This is especially relevant in a
time series context, where there has been an interest in the use of nonparametric
estimates in very long financial time series. Also, under certain circumstances, the
recursive estimator is more efficient than its nonrecursive estimator fn(x) when ef-
ficiency is measured in terms of the variance of an appropriate asymptotic distribu-
tion. Moreover, the estimator can be applied in estimating the hazard rate function,
which is defined as r(x) = f(x)/

(
1−F (x)

)
, where f(x) is an unknown marginal

probability density function and F (x) is a distribution function. A general hazard
rate estimator for r(x) is

(1.5) r̂n(x) =
f̂n(x)

1− Fn(x)
,

where Fn(x) is an empirical distribution of X1, X2, . . . , Xn. Therefore, the prop-
erties of f̂n(x) are extensively discussed by some authors. For example, Liang and
Baek [8] discussed the point asymptotic normality for f̂n(x) under NA random
variables. Masry [10] obtained the quadratic mean convergence and asymptotic
normality of the recursive estimator under various assumptions on the dependence
of Xi; Li et al. [6] discussed the asymptotic bias, quadratic-mean convergence and
established the pointwise asymptotic normality of f̂n(x) for a stationary sequence
of NA sequences. Li and Yang [7] studied the strong convergence rate of recur-
sive probability density estimator f̂n(x) based on NA samples. Li [5] extended the
results of Li and Yang [7] from NA samples to END samples.

In this paper, we will consider the complete convergence rate of recursive
probability density estimator (1.3) under strictly stationary WOD random vari-
ables. The results obtained in the paper improve and extend the corresponding ones
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of Li [5] for END samples and of Li and Yang [7] for NA samples. We will also
study the complete consistency for the estimator (1.3) under some mild conditions.

The paper is organized as follows. The main results are presented in Sec-
tion 2. Some lemmas are provided in Section 3. The proofs are given in Section 4.
Throughout the paper, C, c0, c1, . . . denote some positive constants whose value
may be different in different places; a = O(b) implies that a ¬ Cb; C(f) denotes
all the continuity points of a function f ; and C2(f) stands for a point set for which
the second-order derivative f

′′
exists and is bounded and continuous.

2. MAIN RESULTS

In this section, we will present the strong convergence rate for the recursive
kernel estimator f̂n(x). We adopt the following assumptions which were also used
in Li and Yang [7] and Li [5]:
(A1)

∫∞
−∞K(u)du = 1,

∫∞
−∞ uK(u)du = 0,

∫∞
−∞ u2K(u)du <∞, K(·) ∈ L1.

(A2) The bandwidths hn are such that 0 < hn ↓ 0 and nhn →∞ as n→∞.
Now we state our main results as follows.

THEOREM 2.1. Suppose that (A1) and (A2) hold. Let {Xn, n  1} be a se-
quence of strictly stationary WOD random variables with g(n) = O(nδ) for some
δ  0. Suppose that the kernel K(·) is a bounded monotone density function and
the bandwidth hn = O(n−1/5 log1/5 n). Then for any x ∈ C2(f),

(2.1) |f̂n(x)− f(x)| = O
(
[log n/(nhn)]

1/2
)
, completely.

REMARK 2.1. Li and Yang [7] and Li [5] obtained similar results under NA
and END samples, respectively. The convergence rate obtained in their result is
o
(
[log n(log log n)l/(nbn)]

1/2
)

for some l > 0 under the meaning of almost surely
(a.s.). Noting that WOD contains END and NA, complete convergence is stronger
than a.s. convergence (by the Borel–Cantelli lemma), and the rate in our result is
slightly faster, thus our result improves and extends the corresponding ones of Li
[5] as well as Li and Yang [7].

Relaxing the restriction on the dominating coefficients g(n), we have the fol-
lowing more general result.

THEOREM 2.2. Suppose that (A1) and (A2) hold. Let

γn =
[
log

(
ng(n)

)
/(nhn)

]1/2 → 0.

Let {Xn, n  1} be a sequence of strictly stationary WOD random variables. Sup-
pose that the kernel K(·) is a bounded monotone density function and the band-
width hn is such that hn = O(n−1/5 log1/5 n). Then for any x ∈ C2(f),

(2.2) |f̂n(x)− f(x)| = O(γn), completely.
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REMARK 2.2. In Theorem 2.1, we required that the dominating coefficients
g(n) are polynomially increasing, which is always assumed in many papers. How-
ever, Theorem 2.2 allows the dominating coefficients g(n) to be geometrically in-
creasing. If g(n) = O(nδ) for some δ  0, the strong convergence rate is the same
as that in Theorem 2.1. Consequently, Theorem 2.2 is much more general and ap-
plicable.

Furthermore, by relaxing the restriction on the bandwidth hn, we have the
following result.

THEOREM 2.3. Suppose that (A1) and (A2) hold. Let {Xn, n  1} be a se-
quence of strictly stationary WOD random variables. Suppose that the kernel K(·)
is a bounded monotone density function and log

(
ng(n)

)
/(nhn) → 0. Then for

any x ∈ C2(f),

(2.3) f̂n(x)− f(x)→ 0, completely.

As an application of the results above, we obtain the complete consistency and
the rate of the complete consistency for the hazard rate estimator r̂n(x) as follows.

THEOREM 2.4. Suppose that (A1) and (A2) hold. Let {Xn, n  1} be a
sequence of strictly stationary WOD random variables with g(n) = O(nδ) for
some δ  0. Suppose that the kernel K(·) is a bounded monotone density func-
tion and the bandwidth hn = O(n−1/5 log1/5 n). If there exists a point x0 such
that F (x0) < 1, then for any x ∈ C2(f) and x ¬ x0,

(2.4) |r̂n(x)− r(x)| = O
(
[log n/(nhn)]

1/2
)
, completely.

THEOREM 2.5. Suppose that (A1) and (A2) hold. Let

γn =
[
log

(
ng(n)

)
/(nhn)

]1/2 → 0.

Let {Xn, n  1} be a sequence of strictly stationary WOD random variables. Sup-
pose that the kernel K(·) is a bounded monotone density function and the band-
width hn is such that hn = O(n−1/5 log1/5 n). If there exists a point x0 such that
F (x0) < 1, then for any x ∈ C2(f) and x ¬ x0,

(2.5) |r̂n(x)− r(x)| = O(γn), completely.

THEOREM 2.6. Suppose that (A1) and (A2) hold. Let {Xn, n  1} be a se-
quence of strictly stationary WOD random variables. Suppose that the kernel K(·)
is a bounded monotone density function and log

(
ng(n)

)
/(nhn) → 0. If there

exists a point x0 such that F (x0) < 1, then for any x ∈ C2(f) and x ¬ x0,

(2.6) r̂n(x)− r(x)→ 0, completely.
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3. SOME LEMMAS

In this section, we will present some lemmas which will be used in proving
our main results.

LEMMA 3.1 (Wang et al. [18]). Let {Xn, n  1} be a sequence of WOD ran-
dom variables.

(i) If {fn(·), n  1} are all nondecreasing (or nonincreasing), then {fn(Xn),
n  1} are still WOD.

(ii) For each n  1 and any t ∈ R,

E exp
{
t

n∑
i=1

Xi

}
¬ g(n)

n∏
i=1

E exp{tXi}.

LEMMA 3.2. Let {Xn, n  1} be a sequence of WOD random variables with
EXn = 0 and max1¬i¬n |Xi| ¬ bn a.s. for each n  1, where {bn, n  1} is
a sequence of positive numbers. Suppose that there exists some t > 0 such that
tbn ¬ 1. Then for any ε > 0,

P
(∣∣ n∑

i=1

Xi

∣∣  ε
)
¬ 2g(n) exp

{
− tε+ t2

n∑
i=1

EX2
i

}
.

P r o o f. Noting that |tXi| ¬ 1 a.s. and EXi = 0 for each i  1, we have

E exp{tXi} = 1 +
∞∑
k=2

E(tXi)
k

k!
¬ 1 + t2EX2

i

∞∑
k=2

1

k!
(3.1)

¬ 1 + t2EX2
i ¬ exp{t2EX2

i }.

By Markov’s inequality, Lemma 3.1 (ii) and (3.1), we can see that

P
( n∑
i=1

Xi  ε
)
¬ e−tεE exp

{
t

n∑
i=1

Xi

}
¬ g(n)e−tε

n∏
i=1

E exp{tXi}(3.2)

¬ g(n) exp
{
− tε+ t2

n∑
i=1

EX2
i

}
.

The desired result follows by replacing Xi by −Xi in (3.2). This completes the
proof of the lemma. �

LEMMA 3.3 (Li and Yang [7]). Suppose that (A1) holds; then for all x ∈
C2(f),

lim
h→0

∫
R
K(u)f(x− hu)du = f(x).
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LEMMA 3.4 (Li and Yang [7]). Suppose that (A1) holds; then for all x ∈
C2(f), (

1

n

n∑
i=1

h2i

)−1
|Ef̂n(x)− f(x)| ¬ C <∞.

LEMMA 3.5. Let {Xn, n  1} be a sequence of WOD random variables with
unknown distribution function F (x) and bounded probability density function f(x).
Let Fn(x) be an empirical distribution function. If

µn =:
[
log

(
ng(n)

)
/n

]1/2 → 0,

then
sup
x
|Fn(x)− F (x)| = O(µn), completely.

In particular, if g(n) = O(nδ) for some δ  0, then

sup
x
|Fn(x)− F (x)| = O

(
(log n/n)1/2

)
, completely.

P r o o f. Let F (xni) = i/n for n  3 and 1 ¬ i ¬ n − 1. By Lemma 2 in
Yang [21] we have

(3.3) sup
−∞<x<∞

|Fn(x)− F (x)| ¬ max
1¬j¬n−1

|Fn(xnj)− F (xnj)|+ 2/n.

Noting that nµn →∞, for any positive constant D1, we have 2/n < D1µn/2 for
all n large enough. Then it follows from (3.3) that

(3.4) P
(

sup
−∞<x<∞

|Fn(x)− F (x)| > D1µn

)
¬ P

(
max

1¬j¬n−1
|Fn(xnj)− F (xnj)| > D1µn/2

)
¬

n−1∑
j=1

P
(
|Fn(xnj)− F (xnj)| > D1µn/2

)
.

Let ξi = I(Xi < xnj) − EI(Xi < xnj). By Lemma 3.1, {ξi, i  1} is still a se-
quence of WOD random variables with Eξi = 0, |ξi| ¬ 2 and Eξ2i ¬ 1. Thus,
choosing t = D1µn/4 in Lemma 3.2, we see that, for all n large enough,

(3.5) P
(
|Fn(xnj)− F (xnj)| > D1µn/2

)
= P

(∣∣ n∑
i=1

ξi
∣∣ > D1nµn/2

)
¬ 2g(n) exp

{
−D1nµnt/2 + t2

n∑
i=1

Eξ2i
}
¬ 2g(n) exp{−D1nµnt/2 + nt2}

¬ 2g(n) exp{−D2
1nµ

2
n/16} ¬ 2g(n) exp

{
−D2

1c0 log
(
ng(n)

)
/16

}
¬ 2g(n)

(
ng(n)

)−D2
1c0/16.
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Recall that g(n)  1. Taking D1 sufficiently large such that D2
1c0/16 > 3, by (3.4)

and (3.5) we have

∞∑
n=1

P
(

sup
−∞<x<∞

|Fn(x)− F (x)| > D1µn

)
¬ C

∞∑
n=1

n−1∑
j=1

g(n)
(
ng(n)

)−D2
1c0/16 <∞.

This completes the proof of the lemma. �

4. PROOF OF THE MAIN RESULTS

P r o o f o f T h e o r e m 2.1. Set

ηi = h−1i

[
K

(
x−Xi

hi

)
− EK

(
x−Xi

hi

)]
for 1 ¬ i ¬ n.

Since K(·) is bounded and monotone, {ηi, i  1} is still a sequence of WOD
random variables. Moreover, it follows from 0 < hn ↓ 0 that there exists some
positive constant c1 such that max1¬i¬n |ηi| ¬ c1/hn. By Lemma 3.2 we have

n∑
i=1

Eη2i ¬
n∑

i=1

h−2i EK2

(
x−Xi

hi

)
=

n∑
i=1

h−2i

∫
R
K2

(
x− u

hi

)
f(u)du

=
n∑

i=1

h−1i

∫
R
K2(u)f(x− hiu)du ¬ c2nh

−1
n .

Set λn = [log n/(nhn)]
1/2. Applying Lemma 3.2 with t = D2hnλn/(2c2), where

D2 is some positive constant which will be specified later. It is easy to check that
t · c1/hn ¬ 1 for all n large enough. Then we get

P
(
|f̂n(x)− Ef̂n(x)| > D2λn

)
= P

(∣∣ n∑
i=1

ηi
∣∣ > D2nλn

)
¬ 2g(n) exp

{
−D2nλnt+ t2

n∑
i=1

Eη2i
}
¬ 2g(n) exp{−D2nλnt+ c2nh

−1
n t2}

¬ 2g(n) exp{−D2
2nhnλ

2
n/(4c2)} ¬ 2g(n) exp{− log n ·D2

2/(4c2)}

¬ Cnδ−D2
2/(4c2).

Taking D2 large enough such that δ −D2
2/(4c2) < −2, we have

∞∑
n=1

P
(
|f̂n(x)− Ef̂n(x)| > D2λn

)
<∞,
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that is,

(4.1) |f̂n(x)− Ef̂n(x)| = O
(
[log n/(nhn)]

1/2
)
, completely.

On the other hand, using hn = O(n−1/5 log1/5 n), we have by Lemma 3.4

[log n/(nhn)]
−1/2|Ef̂n(x)− f(x)| ¬ C[log n/(nhn)]

−1/2 1

n

n∑
i=1

h2i

¬ C
(
hn/(n log n)

)1/2 n∑
i=1

h2i ¬ Cn−3/5(log−2/5 n)
n∑

i=1

i−2/5 log2/5 i ¬ C,

which implies that

(4.2) |Ef̂n(x)− f(x)| = O
(
[log n/(nhn)]

1/2
)
.

Note that

(4.3) |f̂n(x)− f(x)| ¬ |f̂n(x)− Ef̂n(x)|+ |Ef̂n(x)− f(x)|.

Therefore, the desired result (2.1) follows immediately by (4.1)–(4.3). The proof
is completed. �

P r o o f o f T h e o r e m 2.2. In view of the proof of Theorem 2.1, we only
need to show that

(4.4) |f̂n(x)− Ef̂n(x)| = O
([

log
(
ng(n)

)
/(nhn)

]1/2)
, completely,

and

(4.5) |Ef̂n(x)− f(x)| = O
([

log
(
ng(n)

)
/(nhn)

]1/2)
.

Noting that g(n)  1, we obtain (4.5) from (4.2) immediately and thus we only
need to prove (4.4). As in the proof of (4.1), set γn =

[
log

(
ng(n)

)
/(nhn)

]1/2.
Let us apply Lemma 3.2 with t = D3hnγn/(2c2) to see that for all n large enough,

P
(
|f̂n(x)− Ef̂n(x)| > D3γn

)
= P

(∣∣ n∑
i=1

ηi
∣∣ > D3nγn

)
¬ 2g(n) exp

{
−D3nγnt+ t2

n∑
i=1

Eη2i
}
¬ 2g(n) exp{−D3nγnt+ c2nh

−1
n t2}

¬ 2g(n) exp{−D2
3nhnγ

2
n/(4c2)} ¬ 2g(n) exp

{
−D2

3/(4c2) · log
(
ng(n)

)}
¬ 2g(n)

(
ng(n)

)−D2
3/(4c2).
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Taking D3 sufficiently large such that D2
3/(4c2) > 2, we have

∞∑
n=1

P
(
|f̂n(x)− Ef̂n(x)| > D3γn

)
<∞,

which is equivalent to (4.4). The proof is completed. �

P r o o f o f T h e o r e m 2.3. In view of the proof of Theorem 2.2, by (4.4)
and log

(
ng(n)

)
/(nhn)→ 0 we have

f̂n(x)− Ef̂n(x)→ 0, completely.

Therefore, we only need to show that

(4.6) |Ef̂n(x)− f(x)| → 0

without the condition hn = O(n−1/5 log1/5 n) in Theorem 2.2. Actually, by Lem-
ma 3.4 and Stolz’s theorem we have

lim
n→∞
|Ef̂n(x)− f(x)| ¬ C lim

n→∞

1

n

n∑
i=1

h2i = C lim
n→∞

h2n = 0.

Consequently, (4.6) is proved and thus the proof of the theorem is completed. �

Since the proofs of Theorems 2.4–2.6 are similar, we present only the proof
of Theorem 2.4 as follows.

P r o o f o f T h e o r e m 2.4. Set F̄n(x) = 1−Fn(x) and F̄ (x) = 1−F (x).
It follows from (1.5) that

(4.7) |r̂n(x)− r(x)| ¬ F̄ (x)|f̂n(x)− f(x)|+ |Fn(x)− F (x)|f(x)
F̄n(x)F̄ (x)

.

From 0 ¬ F (x) ¬ F (x0) < 1 for all x ¬ x0, supx f(x) ¬ C <∞, applying The-
orem 2.1 and taking µn = (log n/n)1/2 in Lemma 3.5, we can see that

(4.8) |f̂n(x)− f(x)| = O
(
[log n/(nhn)]

1/2
)
, completely,

and

(4.9) sup
x¬x0

|Fn(x)− F (x)| = O
(
(log n/n)1/2

)
, completely.

On the other hand, we infer from (4.9) that for x ¬ x0 and all n large enough,

(4.10) F̄n(x)  F̄ (x)/2  F̄ (x0)/2 > 0.

Consequently, the desired result (2.4) follows from (4.7)–(4.10). The proof is com-
pleted. �
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