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Abstract. In this paper, by using a Fourier analytic approach, we inves-
tigate sample path properties of the fractional derivatives of multifractional
Brownian motion local times. We also show that those additive functionals
satisfy a property of local asymptotic self-similarity. As a consequence, we
derive some local limit theorems for the occupation time of multifractional
Brownian motion in the space of continuous functions.
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1. INTRODUCTION

A fractional Brownian motion (fBm for short) BH = {BH(t), t  0} with
Hurst indexH ∈ (0, 1) is a real-valued, centered Gaussian process with covariance
function given by

E
(
BH(t)BH(s)

)
=

1

2
(s2H + t2H − |s− t|2H) for all s, t  0.

Several properties of fBm such as self-similarity and the stationarity of increments
make it important in theory and also a useful model in various applications, such
as in telecommunication, finance, image analysis among others. Note that in the
case H = 1

2 , we retrieve the well-known Brownian motion. The fact that the Hurst
parameter H is independent of time t makes the Hölder regularity of fBm constant
along the paths. This property restricts its applications when modelling phenomena
whose regularity evolves in time, such as Internet traffic and some highly textured
images with strong global organization; see, for example, Lévy-Véhel [15] and
Pesquet-Popescu and Lévy-Véhel [18].
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The multifractional Brownian motion (mBm for short) was introduced as a
natural extension of fBm to overcome this limitation. The basic idea is to replace
the Hurst parameter H by a function H(t) : [0,∞) → [a, b] ⊂ (0, 1) which is a
Hölder continuous function of exponent β > 0, i.e., there exists a finite positive
constant C such that

|H(t)−H(s)| ¬ C|t− s|β for all s, t  0.

1. Moving average representation of mBm (Lévy-Véhel and Peltier [16]):

B̃H(t)(t) =
1

Γ
(
H(t) + 1

2

)( 0∫
−∞

[(t− u)H(t)−1/2 − (−u)H(t)−1/2]W (du)

+
t∫
0

(t− u)H(t)−1/2W (du)
)
, t  0,

where W is a standard Brownian motion defined on R.
2. Harmonizable representation of mBm (Benassi et al. [4]):

B̂H(t)(t) =
∫
R

eitξ − 1

|ξ|H(t)+1/2
Ŵ (dξ), t  0,

where Ŵ (ξ) is the Fourier transform of the series representation of white noise
with respect to an orthonormal basis of L2(R).

In the sequel, the notation B :=
(
B(t), t  0

)
means that both previous rep-

resentations of mBm may be chosen.
When H(·) varies with time, the mBm is no longer self-similar, even though

it is seen as an intricacy; Lévy-Véhel and Peltier [16] proved that if H(·) satisfies
the assumption

(Hβ) : {H(·) is β-Hölder continuous and sup
t∈R+

H(t) < β},

then the mBm has a property called the local asymptotic self-similarity (LASS in
short) defined as follows:

lim
ρ→0+

law

{
B(t+ ρu)−B(t)

ρH(t)
, u ∈ R

}
= law{BH(t)(u), u ∈ R},

where BH(t) is an fBm with the Hurst parameter H(t).
By using the concept of local nondeterminism and the assumption (Hβ), Bou-

foussi et al. [6] proved the existence of a jointly continuous local time of mBm
and studied its Hölder regularity in time and space. In Boufoussi et al. [7], the
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authors proved that the local time of mBm has a kind of local asymptotic self-
similarity (LASS) property. Through this result, they obtained some local limit
theorems corresponding to the mBm (first order limit theorems).

The aim of this work is to establish some local limit theorems for the occupa-
tion time of mBm. To prove our main results we are led to study the regularities of
the fractional derivative of local time of mBm, by using a representation based on
Fourier analytic approach.

The rest of this paper is organized as follows. In Section 2, we give some ba-
sic facts about local times. In Section 3, we prove some Hölder regularities of the
fractional derivative of local time of mBm. Section 4 is devoted to the asymptotic
results: Subsection 4.1 is concerned with the LASS property of those additive func-
tionals, and in Subsection 4.2, some local limit theorems for the occupation time
of mBm are studied.

Most of the estimates in the sequel contain unspecified finite positive con-
stants. We use the same symbol for these constants, even when they vary from one
line to the next.

2. LOCAL TIMES

In this section we recall the definition and some properties of local times of
Gaussian processes and a result on mBm that will be needed in the sequel.

Let
(
X(t), t ∈ R+

)
be a separable random process with Borel sample func-

tion. The occupation measure of X is defined as follows:

µ(A,B) = λ
(
{s ∈ A,X(s) ∈ B}

)
∀A ∈ B(R+), ∀B ∈ B(R),

where λ is the Lebesgue measure on R+. If µ(A, ·) is absolutely continuous with
respect to the Lebesgue measure on R, we say thatX has local time onA and define
the local time L(A, ·) as the Radon–Nikodym derivative of µ(A, ·). Sometimes, we
write Lx

t instead of L([0, t], x).
The following property of local time is called the occupation density formula:
For every t ∈ R+ and every measurable function f : R 7→ R+,

t∫
0

f(Xs)ds =
∫
R
f(x)Lx

t dx.

The well-known Fourier analytic approach introduced by Berman [5] states
that, for a fixed sample function at fixed t, the Fourier transform on x of Lx

t is the
function

F (u) =
∫
R
eiuxLx

t dx.

Using the occupation density formula and the inverse Fourier transform of this
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function, we have

Lx
t =

1

2π

+∞∫
−∞

( t∫
0

eiu(X(s)−x)ds
)
du.(2.1)

The following result due to Boufoussi et al. ([6], Lemma 3.3) will extensively
be used in the sequel.

LEMMA 2.1. Under the assumption (Hβ), for any even integer m  2, there
exist positive and finite constants Cm > 0 and δ > 0 such that, for any t, s  0
with |t − s| < δ, any x, y ∈ R and any 0 < ξ < min

(
1, (1 − λ)/(2λ)

)
, where

λ = supu∈[s,t]H(u), we have

E [Lx
t − Lx

s ]
m ¬ Cm

|t− s|m(1−λ)

Γ
(
1 +m(1− λ)

) ,(2.2)

E [Ly
t − Ly

s − Lx
t + Lx

s ]
m ¬ Cm|y − x|ξm

|t− s|m(1−λ(1+ξ))

Γ
(
1 +m

(
1− λ(1 + ξ)

)) .(2.3)

REMARK 2.1. Estimates similar to (2.2) and (2.3) were proved for the multi-
fractional Brownian sheet by Meerschaert et al. [17], Lemmas 3.5 and 3.7.

3. FRACTIONAL DERIVATIVE OF LOCAL TIME OF mBm

The fractional derivatives have many uses, such as fractional integro-differen-
tiation which has now become a significant topic in mathematical analysis. Frac-
tional derivatives of local time have been discussed for physical purposes in the
paper by Ezawa et al. [9]. For a complete survey on the fractional derivative we
refer the reader to Hardy and Littlewood [13] and the book by Samko et al. [19].

DEFINITION 3.1. Let 0 < θ < 1 and f : R→ R be a function that belongs to
Cθ ∩ L1(R), where Cθ is the space of locally θ-Hölder continuous functions on R.
For 0 < γ < θ, we define Dγ

±f by

Dγ
±f(x) :=

γ

Γ(1− γ)

+∞∫
0

f(x)− f(x∓ y)
y1+γ

dy.

The operators Dγ
+ and Dγ

− are called, respectively, right-sided and left-sided Mar-
chaud fractional derivatives of order γ. We put Dγ := Dγ

+ −D
γ
−.

REMARK 3.1. 1. Dγ
+ and Dγ

− satisfy the switching identity:∫
R
f(x)Dγ

−g(x)dx =
∫
R
g(x)Dγ

+f(x)dx

for any f, g ∈ Cθ(R) ∩ L1(R) and 0 < γ < θ.
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2. Dγ
±f is (θ− γ)-Hölder continuous whenever f is θ-Hölder continuous for

any 0 < γ < θ.
3. For h : R→ R and a > 0, we denote by ha the function x→ h(ax); then

Dγ
±(ha) = aγ(Dγ

±h)a for all γ > 0.

4. The fractional derivatives of the local time are particular continuous addi-
tive functionals of zero energy in the sense of Fukushima [11].

Lemma 2.1 allows us to define the fractional derivative of order γ of local time
of mBm as follows:

DγL(t, ·)(x) := γ

Γ(1− γ)

∞∫
0

Lx+a
t − Lx−a

t

a1+γ
da for all 0 < γ < ξ.

Using (2.1), we get

(3.1) DγL(t, ·)(x)

: =
γ

2πΓ(1− γ)

+∞∫
0

∫
R

t∫
0

eiu(B(s)−(x+a)) − eiu(B(s)−(x−a))

a1+γ
dsduda

=
γ

2πΓ(1− γ)

+∞∫
0

∫
R

t∫
0

eiuB(s)[e−iu(x+a) − e−iu(x−a)] 1

a1+γ
dsduda.

Here are the main results of this section.

THEOREM 3.1. Let 0 < γ < ξ and D ∈
{
Dγ , Dγ

±
}

. Under the assumption
(Hβ), there exist finite and positive constants Cm > 0 and δ > 0 such that for ev-
ery t, s  0 with |t− s| < δ, any x ∈ R and any 0 < ξ < min

(
1, (1− λ)/(2λ)

)
,

where λ = supu∈[s,t]H(u), we have

‖DL(t, ·)(x)−DL(s, ·)(x)‖2m ¬ Cm|t− s|1−λ(1+γ),(3.2)

where ‖ · ‖2m =
[
E| · |2m

]1/(2m).

P r o o f. We will prove (3.2) for Dγ since the other cases may be treated in
the same way. For all integers m  1, we have for any b > 0

‖DγL·t(x)−DγL·s(x)‖2m =

∥∥∥∥+∞∫
0

γ

Γ(1− γ)
Lx+u
t −Lx−u

t −Lx+u
s +Lx−u

s

u1+γ
du

∥∥∥∥
2m

¬ C
(
I1(b) + I2(b)

)
,

where

I1(b) :=
b∫
0

‖Lx+u
t − Lx−u

t − Lx+u
s + Lx−u

s ‖2m
u1+γ

du



104 M. Ait Ouahra et al.

and

I2(b) :=
+∞∫
b

‖Lx+u
t − Lx−u

t − Lx+u
s + Lx−u

s ‖2m
u1+γ

du.

We estimate I1(b) and I2(b) separately.
In view of (2.3), we deduce

I1(b) ¬ Cm|t− s|1−λ(1+ξ)
b∫
0

uξ−γ−1du ¬ Cm|t− s|1−λ(1+ξ)bξ−γ .

Now, we deal with I2(b). We use (2.2) to conclude that

I2(b) ¬ Cm|t− s|1−λ
+∞∫
b

1

u1+γ
du ¬ Cm|t− s|1−λb−γ .

Finally, by choosing b = |t− s|λ, we obtain the desired result. �

THEOREM 3.2. Let 0 < γ < ξ and D ∈
{
Dγ , Dγ

±
}

. Under the assumption
(Hβ), there exists a finite and positive constant Cm>0 such that, for every t, s0
with |t− s| < δ, any (x, y) ∈ R2 and any 0 < ξ < min

(
1, (1− λ)/(2λ)

)
, where

λ = supu∈[s,t]H(u), we have

(3.3) ‖DL(t, ·)(x)−DL(t, ·)(y)−DL(s, ·)(x) +DL(s, ·)(y)‖2m
¬ Cm|t− s|1−λ(1+ξ)|x− y|ξ−γ .

REMARK 3.2. Similar results are obtained, respectively, by Ait Ouahra and
Eddahbi [2] and Ait Ouahra [1] for the local time and the fractional derivative of
local time of a symmetric stable process of index 1 < α ¬ 2. The key ingredient in
their proofs was the Markov property of the symmetric stable process, which is not
satisfied by the mBm.

P r o o f o f T h e o r e m 3.2. For any integer m  1, we have

‖DL(t, ·)(x)−DL(t, ·)(y)−DL(s, ·)(x) +DL(s, ·)(y)‖2m

=

∥∥∥∥ ∫
[0,∞)

Lx+u
t −Lx+u

s −Lx−u
t +Lx−u

s −Ly+u
t +Ly+u

s +Ly−u
t −Ly−u

s

u1+γ
du

∥∥∥∥
2m

¬ C
∫

[0,∞)

∥∥∥∥Lx+u
t −Lx+u

s −Lx−u
t +Lx−u

s −Ly+u
t +Ly+u

s +Ly−u
t −Ly−u

s

u1+γ

∥∥∥∥
2m

du

¬ C
(
J1(b) + J2(b)

)
,
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where

J1(b)

:=
∫
[0,b]

∥∥∥∥Lx+u
t −Lx+u

s −Lx−u
t +Lx−u

s −Ly+u
t +Ly+u

s +Ly−u
t −Ly−u

s

u1+γ

∥∥∥∥
2m

du,

J2(b)

:=
∫

[b,+∞[

∥∥∥∥Lx+u
t −Lx+u

s −Lx−u
t +Lx−u

s −Ly+u
t +Ly+u

s +Ly−u
t −Ly−u

s

u1+γ

∥∥∥∥
2m

du

for some b > 0.
First, let us estimate J1(b). Combining the Minkowski inequality and (2.3),

we obtain

‖Lx+u
t − Lx+u

s − Lx−u
t + Lx−u

s − Ly+u
t + Ly+u

s + Ly−u
t − Ly−u

s ‖2m
¬ ‖Lx+u

t − Lx+u
s − Lx−u

t + Lx−u
s ‖2m + ‖Ly+u

t − Ly+u
s − Ly−u

t + Ly−u
s ‖2m

¬ Cm
|u|ξ|t− s|(1−λ(1+ξ))

Γ
(
1 + 2m

(
1− λ(1 + ξ)

)) .
Therefore,

J1(b) ¬ Cm
|t− s|(1−λ(1+ξ))

Γ
(
1 + 2m

(
1 + λ(1 + ξ)

)) ∫
[0,b]

uξ

u1+γ
du

¬ Cm
|t− s|(1−λ(1+ξ))

Γ
(
1 + 2m

(
1− λ(1 + ξ)

))bξ−γ .
Now, we are going to estimate J2(b). Using the Minkowski inequality and

decomposing otherwise, we obtain

‖Lx+u
t − Lx+u

s − Lx−u
t + Lx−u

s − Ly+u
t + Ly+u

s + Ly−u
t − Ly−u

s ‖2m
¬ ‖Lx+u

t − Lx+u
s − Ly+u

t + Ly+u
s ‖2m + ‖Lx−u

t − Lx−u
s − Ly−u

t + Ly−u
s ‖2m

¬ Cm
|x− y|ξ|t− s|(1−λ(1+ξ))

Γ
(
1 + 2m

(
1− λ(1 + ξ)

)) .
Therefore, J2(b) is dominated by

b−γ · Cm
|x− y|ξ|t− s|(1−λ(1+ξ))

Γ
(
1 + 2m

(
1− λ(1 + ξ)

)) .
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By choosing b = |x− y|, we deduce that

‖DL(t, ·)(x)−DL(t, ·)(y)−DL(s, ·)(x) +DL(s, ·)(y)‖2m
¬ Cm |t− s|(1−λ(1+ξ)) |x− y|ξ−γ ,

which completes the proof of the theorem. �

4. ASYMPTOTIC RESULTS

It is well known that techniques for proving limit theorems related to self-
similar processes use the self-similarity of their local times. It is natural to expect
the same when dealing with processes satisfying the LASS property. The answer
to the preceding question is affirmative in the case of the mBm and the result is
given by the following lemma. (See Theorem 5.1 in Boufoussi et al. [7].)

In the sequel, we will use the following notation:BH(t)(t) = B(t) for the sake
of simplicity.

LEMMA 4.1. Under the assumption (Hβ), for any fixed t0, the local time of
mBm is locally asymptotically self-similar with parameter 1−H(t0), in the sense
that, for every x ∈ R, the family of processes {Yρ(t, x), t ∈ [0, 1]}ρ>0 defined by

(4.1) Yρ(t, x) =
L
(
t0 + ρt, ρH(t0)x+B(t0)

)
− L

(
t0, ρ

H(t0)x+B(t0)
)

ρ1−H(t0)

converges in law to the local time {l(t, x), t ∈ [0, 1]} of the fBm BH(t0) with Hurst
parameter H(t0).

We will introduce the proof of this lemma in the Appendix, to clarify a passage
in the estimate of Iε,ρ1 on page 864 in Boufoussi et al. [7].

REMARK 4.1. The previous result can also be obtained by using propositions
(4.1) and (4.2) in Jolis and Viles [14], which allows us to identify the limit law as
local time.

4.1. LASS for the fractional derivative of local time of mBm.

PROPOSITION 4.1. Under the assumption (Hβ), for any fixed t0, the frac-
tional derivative of local time of mBm is LASS with parameter 1− (1 + γ)H(t0),
in the sense that, for every x ∈ R, the family of processes {Dρ(t, x), t ∈ [0, 1]}ρ0
defined by

Dρ(t, x) :=
DγL(t0 + tρ, ·)

(
ρH(t0)x+B(t0)

)
−DγL(t0, ·)

(
ρH(t0)x+B(t0)

)
ρ1−H(t0)(1+γ)

converges in law to the fractional derivative {Dγl·t(x), t ∈ [0, 1]} of local time of
the fBm BH(t0).
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P r o o f. To prove the convergence in law, we proceed in two steps. First, we
prove the tightness of the family {Dρ(t, x), t ∈ [0, 1]}ρ0 in the space of continu-
ous functions. According to Theorem 3.1, we obtain

E|Dρ(t, x)−Dρ(s, x)|m

=
E
∣∣DγL

(
t0 + ρt, ρH(t0)x+B(t0)

)
−DγL

(
t0 + sρ, ρH(t0)x+B(t0)

)∣∣m
ρ(1−(1+γ)H(t0))m

¬ C |tρ− sρ|
(1−(1+γ)H(t0))m

ρ(1−(1+γ)H(t0))m
¬ C|t− s|m(1−H(t0)(1+γ)).

Then to prove the tightness, it suffices to take m > 1/
(
1−H(t0)(1 + γ)

)
.

It now remains to prove the convergence of the finite-dimensional distributions
of Dρ, as ρ tends to zero, to those of the fractional derivative of local time of the
fBm BH(t0) with Hurst parameter H(t0).

We note Cγ = γ/
(
2πΓ(1− γ)

)
and Y ρ(t0) = ρH(t0)x + B(t0). In view of

the definition of DγL, we get

DγL(t0 + tρ, ·)
(
Y ρ(t0)

)
−DγL(t0, ·)

(
Y ρ(t0)

)
= Cγ

∞∫
0

∫
R

t0+tρ∫
t0

eiuB(s)[e−iu(Y
ρ(t0)+a) − e−iu(Y ρ(t0)−a)]

1

a1+γ
daduds

= Cγ

∞∫
0

∫
R

t∫
0

eiuB(ρr+t0)[e−iu(Y
ρ(t0)+a) − e−iu(Y ρ(t0)−a)]

1

a1+γ
ρdadudr

= Cγ

∞∫
0

∫
R

t∫
0

exp

[
i

v

ρH(t0)
B(ρr + t0)

]{
exp

[
−i v

ρH(t0)

(
Y ρ(t0) + a

)]
− exp

[
−i v

ρH(t0)

(
Y ρ(t0)− a

)]}ρ1−H(t0)

a1+γ
dadvdr

= Cγ

∞∫
0

∫
R

t∫
0

exp

[
iv
B(ρr + t0)−B(t0)

ρH(t0)

]
× [e−iv(x+b) − e−iv(x−b)] 1

b1+γ
ρ1−(1+γ)H(t0)dbdvdr.

We have used the change of variables: s = ρr+ t0, u = v/ρH(t0) and b = a/ρH(t0).
Consequently, we have

Dρ(t, x) = Cγ

∞∫
0

∫
R

t∫
0

exp

[
iv
B(ρr + t0)−B(t0)

ρH(t0)

]
× [e−iv(x−b) − e−iv(x+b)]

1

b1+γ
drdvdb,

which is the fractional derivative of local time of the Gaussian process Bρ.
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Finally, by using Lemma 5.2 in [8], concerning the continuity of the fractional
derivative, we complete the proof of this result. �

4.2. Local limit theorems. Limit theorems for fractional derivative of local
time were studied by Yamada [21] for Brownian motion, Fitzsimmons and Getoor
[10] for symmetric stable process of index 1 < α ¬ 2 and Shieh [20] for the
fBm with Hurst parameter H ∈ (0, 1) where this last author proved that if f is
in the range of fractional derivative transform, i.e., f = Dγ

±g with g ∈ Cβ and∫
g(x)dx 6= 0, then the family of processes,{

1

A1−(1+γ)H

At∫
0

f(Xs)ds, t  0

}
,

converges in law, in the space of continuous functions, asA→ +∞, to the process{ ∫
g(x)dxDγ

±L
·
t(0)

}
.

Ait Ouahra and Eddahbi [2] generalized the result of Fitzsimmons and Getoor
[10] in Hölder space and Ait Ouahra and Ouali [3] extended the result of Shieh
[20] to Besov space.

The main tool in the proof of all these results was the self-similarity of the
process. In this section, by using the LASS property, we investigate local limit
theorems for the occupation time of the mBm.

THEOREM 4.1. Suppose f = Dγ
±g, where g ∈ Cβ with compact support for

some β such that 0 < γ < β < ξ < min
(
1, (1− λ)/(2λ)

)
. Under the assumption

(Hβ), the following convergence in law holds:

lim
A→+∞

lim
ρ→0+

1

A1−(1+γ)H(t0)

At∫
0

f

(
B(ρs+ t0)−B(t0)

ρH(t0)

)
ds =

∫
R
g(x)dxDγ

∓l
·
t(0).

THEOREM 4.2. Suppose f = Dγ
±g, where g ∈ Cβ with compact support for

some β such that 0 < γ < β < ξ < min
(
1, (1− λ)/(2λ)

)
. Under the assumption

(Hβ), we have

1

ψ(ρ)

ρt+t0∫
t0

f

(
B(s)−B(t0)− ρH(t0)y

θ(ρ)

)
ds

L−−−−→
ρ→0+

∫
R
g(x)dxDγ

∓l
·
t(y)

with
∫
|g(x)||x|ξ−γdx <∞, ψ(ρ)/θ(ρ) = ρ1−(1+γ)H(t0) and θ(ρ)/ρH(t0) = o(1).

P r o o f o f T h e o r e m 4.1. Combining the LASS property of mBm and
Theorem VI.4.2 in Gihman and Skorohod [12], we obtain

At∫
0

f

(
B(sρ+ t0)−B(t0)

ρH(t0)

)
ds

L−−−−→
ρ→0+

At∫
0

f
(
BH(t0)(s)

)
ds,
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and by using the result of Shieh [20], the family of processes{
1

A1−(1+γ)H(t0)

At∫
0

f
(
BH(t0)(s)

)
ds

}
t0

converges in law to the process{ ∫
R
g(x)dxDγ

∓l
·
t(0)

}
t0.

Then the theorem is proved. �

P r o o f o f T h e o r e m 4.2. We prove only the case f = Dγ
+g since the

proof of the other case is similar. We put Aρ = θ(ρ)x + ρH(t0)y + B(t0) and
Bρ = ρH(t0)y+B(t0). By the occupation time formula and the switching identity,
we have

1

ψ(ρ)

ρt+t0∫
t0

Dγ
+g

(
B(s)−B(t0)− ρH(t0)y

θ(ρ)

)
ds

=
∫
R
f(x)

L(ρt+ t0, Aρ)− L(t0, Aρ)

ρ1−(1+γ)H(t0)
dx

=
∫
R
g(x)

Dγ
−L(ρt+ t0, ·)(Aρ)−Dγ

−L(t0, ·)(Aρ)

ρ1−(1+γ)H(t0)
dx.

Moreover,

Dγ
−L(ρt+ t0, ·)(Aρ)−Dγ

−L(t0, ·)(Aρ)

= Dγ
−L(ρt+ t0, ·)(Aρ)−Dγ

−L(ρt+ t0, ·)(Bρ)−Dγ
−L(t0, ·)(Aρ)

−Dγ
−L(t0, ·)(Bρ) +Dγ

−L(ρt+ t0, ·)(Bρ) +Dγ
−L(t0, ·)(Bρ)

= Dγ
−L(ρt+t0, ·)(Bρ)−Dγ

−L(t0, ·)(Bρ)+D
γ
−L(J0, ·)(Aρ)−Dγ

−L(J0, ·)(Bρ)

with J0 = [t0, t0 + ρt]. Therefore,

1

ψ(ρ)

ρt+t0∫
t0

Dγ
+g

(
B(s)−B(t0)− ρH(t0)y

θ(ρ)

)
ds

=
Dγ
−L(ρt+ t0, ·)(Bρ)−Dγ

−L(t0, ·)(Bρ)

ρ1−(1+γ)H(t0)

∫
R
g(x)dx

−
∫
R

Dγ
−L(J0, ·)(Bρ)−Dγ

−L(J0, ·)(Aρ)

ρ1−(1+γ)H(t0)
g(x)dx

=: (∗)− (∗∗).
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By Proposition 4.1 we have (∗) L−→Dγl·t(y)
∫
R g(x)dx as ρ→ 0. It only remains to

prove that (∗∗) converges to zero. By the Hölder inequality we have

(4.2) E
∣∣∣∣ ∫
R

Dγ
−L(J0, ·)(Bρ)−Dγ

−L(J0, ·)(Aρ)

ρ1−(1+γ)H(t0)
g(x)dx

∣∣∣∣
¬
∫
R
|g(x)|

∥∥∥∥Dγ
−L(J0, ·)(Bρ)−Dγ

−L(J0, ·)(Aρ)

ρ1−(1+γ)H(t0)

∥∥∥∥
2

dx.

Applying Lemma 2.1 for the process B(t)−B(t0) instead of mBm, we have

∥∥∥∥Dγ
−L(J0, ·)(Bρ)−Dγ

−L(J0, ·)(Aρ)

ρ1−(1+γ)H(t0)

∥∥∥∥
2

¬ C(tρ)1−H(t0)(1+ξ)|x|ξ−γ θ(ρ)ξ−γ

ρ1−(1+γ)H(t0)

¬ Ct1−H(t0)(1+ξ)|x|ξ−γ
(
θ(ρ)

ρH(t0)

)ξ−γ

for sufficiently small ρ and 0 < γ < ξ < min
(
1, (1 − λ)/(2λ)

)
. Hence, (4.2) is

dominated by

Ct1−H(t0)(1+ξ)
∫
R
|g(x)||x|ξ−γdx

(
θ(ρ)

ρH(t0)

)ξ−γ
.

This last integral is finite by the assumption of the theorem and then (∗∗) tends to
zero as ρ tends to zero. �

5. APPENDIX

P r o o f o f L e m m a 4.1. To prove the convergence in law, we proceed in
two steps. First we prove the tightness of the family {Yρ(t, x), t ∈ [0, 1]}ρ>0 in the
space of continuous functions. By using (2.2) and (2.3), for ρ small enough, we
obtain

E|Yρ(t, x)− Yρ(s, x)|m

=
E
[
L
(
t0 + ρt, ρH(t0)x+B(t0)

)
− L

(
t0 + ρs, ρH(t0)x+B(t0)

)]
ρ(1−H(t0))m

¬ Cm|t− s|(1−H(t0))m.

We can take m > 1/
(
1−H(t0)

)
, to get the tightness.
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Now, we prove the convergence of the finite-dimensional distributions of Yρ,
as ρ tends to zero, to those of the local time ℓ of the fBm BH(t0) with Hurst param-
eter H(t0). We need to show that, for any d  1, a1, . . . , ad ∈ R and t1, . . . , td ∈
[0, 1], the following convergence holds:

d∑
j=1

ajYρ(tj , x)
L−→

d∑
j=1

ajℓ(tj , x) as ρ→ 0.

We will show the convergence of the corresponding characteristic function. More
precisely, we prove that∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj , x)
]
− E exp

[
iλ

d∑
j=1

ajℓ(tj , x)
]∣∣→ 0 as ρ→ 0.

Let us introduce the following notation:

Bρ(t) =
B(t0 + ρt)−B(t0)

ρH(t0)
,

ϕε,x(X)(t) =
1

ε

t∫
0

1[x,x+ε]

(
X(s)

)
ds,

Iε,ρ1 =
∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj , x)
]
− E exp

[
iλ

d∑
j=1

ajϕε,x(B
ρ)(tj)

]∣∣,
Iε,ρ2 =

∣∣E exp
[
iλ

d∑
j=1

ajϕε,x(B
H(t0))(tj)

]
− E exp

[
iλ

d∑
j=1

ajϕε,x(B
ρ)(tj)

]∣∣
and

Iε,ρ3 =
∣∣E exp

[
iλ

d∑
j=1

ajϕε,x(B
H(t0))(tj)

]
− E exp

[
iλ

d∑
j=1

ajℓ(tj , x)
]∣∣.

Therefore,
(5.1)∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj , x)
]
− E exp

[
iλ

d∑
j=1

ajℓ(tj , x)
]∣∣ ¬ Iε,ρ1 + Iε,ρ2 + Iε,ρ3 .

On the other hand, Yρ is the local time of Bρ and by using the mean value theorem
and the occupation density formula we obtain

Iε,ρ1 ¬ C max
1¬j¬d

E|Yρ(tj , x)− ϕε,x(Bρ)(tj)|

= C max
1¬j¬d

E
∣∣∣∣1ε x+ε∫

x

Yρ(tj , y)dy − Yρ(tj , x)
∣∣∣∣

¬ C max
1¬j¬d

1

ε

x+ε∫
x

‖Yρ(tj , y)− Yρ(tj , x)‖Lm(Ω)dy

(5.2)
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and

‖Yρ(tj , y)− Yρ(tj , x)‖Lm(Ω)

=

∥∥∥∥L
(
t0 + ρtj , ρ

H(t0)y +B(t0)
)
− L

(
t0, ρ

H(t0)y +B(t0)
)

ρ1−H(t0)

−
L
(
t0 + ρtj , ρ

H(t0)x+B(t0)
)
− L

(
t0, ρ

H(t0)x+B(t0)
)

ρ1−H(t0)

∥∥∥∥
Lm(Ω)

.

On the other hand, putting Ij = [t0, t0 + ρtj ], we get∥∥∥∥L
(
Ij , ρ

H(t0)y +B(t0)
)
− L

(
Ij , ρ

H(t0)x+B(t0)
)

ρ1−H(t0)

∥∥∥∥
Lm(Ω)

¬ Cm(ρtj)
1−H(t0)(1+ξ)ρH(t0)ξ|x− y|ξ

ρ1−H(t0)
¬
Cmt

1−H(t0)(1+ξ)
j ρ1−H(t0)|x− y|ξ

ρ1−H(t0)

¬ Cm|x− y|ξ.

Therefore, (5.2) is dominated by

Cm max
1¬j¬d

1

ϵ

x+ε∫
x

|x− y|ξdy = Cmε
ξ.

Then (5.2) converges to zero as ε tends to zero uniformly in ρ.
We deal now with Iε,ρ2 . Since the family of processes Bρ(t), t ∈ [0, 1]ρ>0,

converges in distribution to the fBm BH(t0)(t), t ∈ [0, 1], with Hurst parameter
H(t0), the second term converges to zero as ρ tends to zero, by Lemma 5.1 in
Boufoussi et al. [7]. The last term in (5.1) is treated in a similar way to the first one
and the proof of the finite-dimensional convergence is complete.

Acknowledgments. We would like to thank Professors Marco Dozzi and Bra-
him Boufoussi for their constructive suggestions. We are also grateful to the referee
for making thoughtful comments which have led to several improvements in the
paper, especially in the proof of Theorem 3.2.

REFERENCES

[1] M. Ait Ouahra, Weak convergence to fractional Brownian motion in some anisotropic Besov
space, Ann. Math. Blaise Pascal 11 (1) (2004), pp. 1–17.
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