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Abstract. The current work deals with the granular media equation
whose probabilistic interpretation is the McKean–Vlasov diffusion. It is
well known that the Laplacian provides a regularization of the solution. In-
deed, for any t > 0, the solution is absolutely continuous with respect to the
Lebesgue measure. It has also been proved that all the moments are bounded
for positive t. However, the finiteness of the entropy of the solution is a new
result which will be presented here.
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1. INTRODUCTION

Our aim is to show that the entropy of the solution of the granular media
equation is finite provided that t is positive.

Indeed, several results are proven under the assumption that the initial entropy
is finite. For example, in [13] and [14], we prove the long-time convergence under
the following three assumptions:

• the finiteness of some moment,
• the fact that µ0 is absolutely continuous with respect to the Lebesgue mea-

sure,
• the finiteness of the entropy of µ0.

The first assumption is necessary to prove the existence of a solution to the self-
stabilizing diffusion (whose law is the solution of the granular media equation) so
that it cannot be relaxed.

The second assumption may be suppressed. Indeed, we know – see [10] and
[11] – that the law at time t > 0 is absolutely continuous with respect to the
Lebesgue measure.

∗ I would like to thank Florent Malrieu for his article which led me to simplify the writing of
this paper. I would also like to thank the anonymous referee for his precious remarks.



76 J . Tugaut

However, to obtain the convergence, we need the initial free energy to be finite
so that the initial entropy has to be finite.

In [2], the authors establish a convergence in the Wasserstein distance and
the rate of convergence. Nonetheless, they assume the finiteness of entropy of the
initial law µ0.

The results in [2] have been used in [4] to establish a creation of chaos and
a uniform propagation of chaos without global convexity properties. However, the
authors need to apply the results in [2] to µ0 which are discrete probability mea-
sures. Consequently, we had to adapt the results and were not able to apply them
directly.

This stresses the importance of the finiteness of the entropy for granular media
equations.

Such a result has been obtained in [1] and claimed in [12] in the case of a linear
partial differential equation which corresponds to a time reversible diffusion.

Now, we present the model. Let us consider µ0 ∈ P
(
Rd

)
a probability mea-

sure and X0 a random variable on Rd the law of which is µ0. We look at the
diffusion

(1.1) Xt = X0 + σWt −
t∫
0

∇V (Xs) ds−
t∫
0

(
∇F ∗ L (Xs)

)
(Xs) ds,

V and F being two potentials on Rd, (Wt)t0 being a Brownian motion, and ∗
being used to denote the convolution.

By µt := L (Xt) we denote the law of the so-called McKean–Vlasov diffusion
X , which is the solution of equation (1.1). We know from [11] and [10] that for
any t > 0, µt(dx) = u(t, x)dx. Moreover, the family {u(t, x) : t > 0, x ∈ Rd}
satisfies a nonlinear partial differential equation, the granular media one:

(1.2)
∂u

∂t
= ∇ ·

{
σ2

2
∇u+ u (∇V +∇F ∗ u)

}
.

We consider the semigroup (Pt)t0 defined by Ptf(x) := Ex [f (Xt)]. The
semigroup is associated with the following generator Lt:

(1.3) Lt :=
σ2

2
∆−

(
∇V +∇F ∗ u(t, ·)

)
· ∇.

This generator depends on the time so the semigroup may not be time-reversible.
Let us now formulate the assumptions needed in the paper. We make the same

assumptions as the ones in [14].
(A1) The potential V is a smooth function.
(A2) There exists a compact subset K of Rd such that ∇2V (x) > 0 for all x /∈ K.
Moreover, lim‖x‖→+∞∇2V (x) = +∞.
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(A3) The gradient∇V is slowly increasing: there exist m ∈ N, C > 0 and a func-
tionR from Rd to Rd such that

∇V (x) = C‖x‖2m−2x+R(x)

for all x ∈ Rd. Here, the functionR satisfies lim‖x‖→+∞R(x)‖x‖−(2m−1) = 0.
(A4) There exists an even polynomial function G on R such that F (x) = G(‖x‖).
Also, deg (G) =: 2n  2.
(A5) The function G is convex.

Typically, V is a polynomial function, like V (x) = x4/4 − x2/2 (in dimen-
sion one) and F (x) = α

2x
2. Let us point out that the convexity of G is not necessary

in this work.
We need to make another assumption:

(A6) The moment of order 8q2 of the law µ0 is finite:∫
Rd

x8q
2
µ0(dx) <∞, where q := max{m,n}.

Under assumptions (A1)–(A6), we know from Theorem 2.13 in [5] that there
exists a unique strong solution X on R+ to equation (1.1). Moreover, we have the
following uniform boundedness of the moments:

max
1¬j¬8q2

sup
t0

E[‖Xt‖j ] ¬M8q2 < +∞.

Furthermore (see Proposition A.2 in [13]), for any k ∈ N and for any t0 > 0,
the quantity suptt0 E[‖Xt‖k] is finite.

According to [16], there exists an invariant probability µσ. Let us note that we
may not have uniqueness of this invariant probability, see [6], [16], [15].

Here, our aim is to prove the finiteness of the quantity∫
µt log(µt)

for any t > 0. In [1], the authors have obtained the finiteness of the relative en-
tropy with respect to the unique invariant probability for a linear diffusion, without
assuming any convexity properties.

First, we give the main result – Theorem A – that is to say, the finiteness of
the entropy for t positive. Then, we provide two immediate corollaries: one about
the simple convergence (Corollary C which comes from [13]) and the other about
the convergence in the Wasserstein distance (Corollary D which comes from [2]).

In the last section, we prove Theorem A.
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2. MAIN RESULTS

We first give the main result of our current work.

THEOREM A. Under assumptions (A1)–(A6), for any t > 0, we have the
finiteness of the entropy of the law µt = L (Xt). In other words, for any t > 0,
L (Xt) is absolutely continuous with respect to the Lebesgue measure and its den-
sity ft satisfies the inequality∫

Rd

ft(x) log[ft(x)]dx < +∞.

REMARK B. The convexity of the function G is not necessary. In fact, the result
still holds for any inhomogeneous diffusion whose diffusion coefficient is constant
and whose drift has the form∇V +∇xF(x, µt).

By Theorem A in [14], we deduce the following assertion.

COROLLARY C. If assumptions (A1)–(A6) are satisfied and if the set of in-
variant probabilities is discrete (see [6]–[8] for assumptions such that there are
exactly three invariant probabilities), we have the weak convergence in long-time
of µt toward an invariant probability µσ.

By the results in [2], Theorem A implies the following statement.

COROLLARY D. If assumptions (A1)–(A6) are satisfied and if V is strictly
convex (but not necessarily uniformly strictly convex), then µt converges, in the
Wasserstein distance, toward the unique invariant probability. Moreover, the rate
of convergence is exponential.

3. PROOF OF THEOREM A

First of all, provided that t > 0, µt is absolutely continuous with respect to the
Lebesgue measure so that there exists ft such that

• ft  0,
•
∫
Rd ft(x)dx = 1,

• µt(dx) = ft(x)dx.
For the moment, nothing ensures us that∫

Rd

ft(x) log
(
ft(x)

)
dx < +∞ .

Let g0 be a nonnegative function with integral equal to one. We put gt := Ptg,
where the semigroup (Pt)t0 is generated by

(3.1) Lt =
σ2

2
∆− (∇V +∇F ∗ µt) ·∇.

It is sufficient to show that
∫
gt log(gt) < +∞ for any t > 0.

Let us recall Proposition 2.1 in [16]:
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LEMMA 3.1. For any σ > 0, there exists an invariant probability µσ for dif-
fusion (1.1).

We can also find a proof of this statement in [2].
We will consider the relative entropy with respect to µσ:

(3.2) H (ν | µσ) =
∫ f

µσ
log

(
f

µσ

)
µσ(dx),

where ν(dx) := f(x)dx. Indeed, we will have the time reversibility by starting
from µσ.

Let us remind the reader that the probability measure µσ (see [6] and [16])
satisfies

(3.3) µσ(dx) =
exp

[
− 2

σ2

(
V (x) + F ∗ µσ(x)

)]∫
Rd

exp
[
− 2

σ2

(
V (y) + F ∗ µσ(y)

)]
dy

dx.

Consequently, we get

H (ν | µσ) =
∫
Rd

f(x) log
(
f(x)

)
dx+

2

σ2

∫
Rd

(
V (x) + F ∗ µσ(x)

)
f(x)dx(3.4)

+ log

{ ∫
Rd

exp

[
− 2

σ2

(
V (y) + F ∗ µσ(y)

)]
dy

}
.

However, according to Theorem 2.13 in [5], we have the uniform boundedness of
the moments from 1 to 8q2, where, roughly speaking, 2q is defined as the maximum
of the degrees of V and F .

We thus infer that the quantity∣∣ ∫
Rd

(
V (x) + F ∗ µσ(x)

)
gt(x)dx

∣∣
is bounded by a constant C0.

Moreover, F ∗ µσ is a polynomial function with parameters which only de-
pend on σ (through the moments of the fixed measure µσ). We also know that it
is convex. Since V has polynomial behavior and is convex at infinity, the function
x 7→ exp

[
− 2

σ2

(
V (x) + F ∗ µσ(x)

)]
is integrable with respect to the Lebesgue

measure. As a consequence, the quantity

log

{ ∫
Rd

exp

[
− 2

σ2

(
V (y) + F ∗ µσ(y)

)]
dy

}
is finite. Since σ is fixed, it is bounded with respect to the time.

We deduce that it is sufficient to prove the finiteness of H (Ptg | µσ).
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LEMMA 3.2. Let X0 be a random variable which follows the law µσ. Then,
for any t  0, for any functions f and g, we have

(3.5) E [f(Xt)g(X0)] = E [f(X0)g(Xt)].

P r o o f. By definition, we have

Xt = X0 + σWt −
t∫
0

(∇V +∇F ∗ µs) (Xs) ds.

However, since µ0 = µσ, we deduce that µs = µσ for any s  0. Then

Xt = X0 + σWt −
t∫
0

(∇V +∇F ∗ µσ) (Xs) ds.

Consequently, X is a Kolomogorov diffusion and thus we have the time reversibil-
ity (3.5). �

We put f0 := g0/µ
σ. We will work with f0 and (ft)t0.

We proceed like in [1]. We have

(3.6) H (νt | µσ) =
∫
Rd

Ptf log(Ptf)µ
σ,

where νt(dx) = ft(x)µ
σ(dx). We apply equality (3.5) and obtain

(3.7) H (νt | µσ) =
∫
Rd

fPt log(Ptf)µ
σ.

We will now bound Pt log(Ptf) by log(P2tf).
Let x and y be in Rd. We set x(s) := y + s

t (x− y) for any s ∈ [0, t]. We also
consider a function h from [0, t] to [0, t] which is C1-continuous such that h(0) = 0
and h(t) = t.

We consider the trajectory γ(s) := x
(
h(s)

)
. We remark that γ(0) = y and

γ(t) = x. This function γ plays the role of a geodesic between x and y with respect
to the Riemannian metric of the diffusion.

We now introduce

(3.8) ξ(s) :=
(
Ps log(P2t−sf)

)(
γ(s)

)
.

LEMMA 3.3. We have the following derivative:

dξ

ds
= −Ps

|∇P2t−sf |2

(P2t−sf)
2

(
γ(s)

)
+

h′(s)

t

〈
∇Ps log (P2t−sf)

(
γ(s)

)
; x− y

〉
.
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P r o o f. We put g := P2t−sf . Thus, we have

ξ′(s) =Ps (Ls log g)
(
γ(s)

)
− Ps

Lsg

g

(
γ(s)

)
+
〈
∇Ps(log g)

(
γ(s)

)
; γ′(s)

〉
.

By the diffusion property, we have

Ls log g =
1

g
Lsg −

1

g2
Γ (g, g).

Here, Γ (f, g) is equal to 〈∇f ; ∇g〉. Consequently, we obtain

ξ′(s) =− Ps
Γ(g, g)

g2
(
γ(s)

)
+
〈
γ′(s); ∇Ps(log g)

(
γ(s)

)〉
=− Ps

|∇P2t−sf |2

(P2t−sf)
2

(
γ(s)

)
+

h′(s)

t

〈
∇Ps log (P2t−sf)

(
γ(s)

)
; x− y

〉
,

which completes the proof. �

We have the immediate upper bound:
(3.9)

ξ′(s) ¬ −Ps
|∇P2t−sf |2

(P2t−sf)
2

(
γ(s)

)
+
|h′(s)|

t
|x− y|

∣∣∇Ps log (P2t−sf)
(
γ(s)

)∣∣.
Now we give a crucial result.

LEMMA 3.4. For any s  0, we have the upper bound

|∇Ps (logP2t−sf)| ¬ eKsPs
|∇P2t−sf |
P2t−sf

,

with K := − infRd ∇2V > 0.

We do not provide the proof. It is sufficient to adapt Lemma 1.3 in [9]. More-
over, it is a particular case of Lemma 3.7 in [3].

Lemma 3.4 together with (3.9) yields

(3.10)

ξ′(s) ¬ −Ps
|∇P2t−sf |2

(P2t−sf)
2

(
γ(s)

)
+
|h′(s)|

t
|x− y|eKsPs

|∇P2t−sf |
P2t−sf

(
γ(s)

)
.

By putting

X :=
|∇P2t−sf |
P2t−sf

(
γ(s)

)
and Y :=

|h′(s)|
2t
|x− y|eKs,
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we have

ξ′(s) ¬ −Ps(X
2 + 2XY ) ¬ PsY

2 =
|h′(s)|2

4t2
|x− y|2e2Ks.

Consequently, we have the inequality

(3.11) ξ(t)− ξ(0) ¬
t∫
0

|h′(s)|2

4t2
|x− y|2e2Ksds.

However, ξ(t) = Pt logPtf(x) and ξ(0) = logP2tf(y). Thus, we have the
log-Harnack inequality

(3.12) Pt logPtf(x) ¬ logP2tf(y) +
|x− y|2

4t2

t∫
0

|h′(s)|2e2Ksds.

From inequality (3.12) we have the finiteness of the relative entropy with re-
spect to the probability measure µσ. However, we will give a better result by linking
the entropy to the Wasserstein distance between ν0 and µσ.

To obtain the best inequality, we take

h(s) := t
e−2Ks − 1

e−2Kt − 1
.

Thus, we obtain

(3.13) Pt logPtf(x) ¬ logP2tf(y) +
|x− y|2

2S(t)

with

(3.14)
1

S(t)
= K

[
1− 1

1− e2Kt

]
.

We take the infimum for y running over Rd and obtain

(3.15) Pt logPtf(x) ¬
1

S(t)
min
y∈Rd

{
S(t)φ(y) +

1

2
|x− y|2

}
with φ(y) := logP2tf(y). However, by Jensen’s inequality, we have∫

Rd

φ(y)µσ(dy) =
∫
Rd

log(P2tf)(y)µ
σ(dy)

¬ log
∫
Rd

P2tfµ
σ(dy) = log

∫
R
ν2t(dy) = 0.
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Consequently, inequality (3.15) becomes
(3.16)

Pt logPtf(x) ¬
1

S(t)

[
min
y∈Rd

{
S(t)φ(y) +

1

2
|x− y|2

}
−
∫
Rd

S(t)φ(y)µσ(dy)

]
.

We take the supremum for φ bounded and measurable, and then we carry out the
integration over x ∈ Rd. We obtain

(3.17) H (νt | µσ)

¬ 1

S(t)
sup
φ

[ ∫
Rd

min
y∈Rd

(
φ(y) +

1

2
|x− y|2

)
ν0(dx)−

∫
Rd

φ(y)µσ(dy)

]
.

We now use the Monge–Kantorovich duality. For any measure ν, we have

W2
2 (ν;µ

σ) = sup
φ

[ ∫
Rd

min
y∈Rd

(
φ(y) +

1

2
|x− y|2

)
ν(dx)−

∫
Rd

φ(y)µσ(dy)

]
.

We refer the reader to page 678 in [1]. This yields

(3.18) H (νt | µσ) ¬ 1

S(t)
W2

2 (ν0;µ
σ),

which completes the proof.
Let us observe that 1/S(t) goes to infinity as t goes to zero.
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