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Abstract. Analogues of the classical Central Limit Theorem are
proved in the noncommutative setting of random variables which are bm-
independent and indexed by elements of positive non-symmetric cones, such
as the circular cone, sectors in Euclidean spaces and the Vinberg cone. The
geometry of the cones is shown to play a crucial role and the related volume
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1. INTRODUCTION

The classical Central Limit Theorem (CLT) establishes the convergence, to
the normal law N(0, 1), of the normalized partial sums

SN :=
1√
N

N∑
j=1

Xj

of independent identically distributed random variables {Xj : j = 1, 2, . . .} sat-
isfying E(Xj) = 0 and E(X2

j ) = 1. It has been generalized to noncommutative
settings of free independence (Voiculescu [8], see also Bożejko [1]), monotone in-
dependence (Muraki [5]) and Boolean independence [7]. These generalizations are
obtained by replacing the notion of classical independence with the noncommuta-
tive ones, and the framework is the noncommutative probability space of the form
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(A, φ), where A is a unital *-algebra and φ is a state on it (which plays the role
of the expectation E). In such a framework one considers the convergence of mo-
ments limN→∞ φ

(
(SN )n

)
for Xj being (free, monotone or Boolean) independent

self-adjoint elements of A with φ(Xj) = 0 and φ
(
(Xj)

2
)
= 1 for j ∈ N. As the

result one gets in the limit the (moments of) semicircle (Wigner) law (free CLT),
arcsine law (monotone CLT) and Bernoulli law (Boolean CLT).

The notion of bm-independence has been introduced in [11] (see also [10]) and
it combines the monotone and Boolean independences (the details are provided in
Section 2). It is defined for random variables which are indexed by an arbitrary
partially ordered set, and this introduces a new factor – the structure of the index set
– comparing to the above cases where the index set N is linearly (totally) ordered.
Natural examples of partially ordered sets (V,�) are given by positive cones Π ⊂
V in Euclidean spaces V – then for u, v ∈ V one defines u � v if v − u ∈ Π. Let
us recall that a positive cone in Euclidean space is a subset closed under addition
of vectors and under multiplication by positive scalars.

However, for such general index sets one faces the problem of finding an ad-
equate formulation of the Central Limit Theorem (called bm-CLT). The studies
[11] provided the bm-CLT for index sets being discrete subsets I ⊂ Π (consisting
of elements with integer entries) in positive symmetric cones Π (the definition is
provided in Section 2), such as Rd

+, the Lorentz cones Λd
1 (d ∈ N), the positive def-

inite real symmetric matrices and the positive definite (complex or quaternionic)
Hermitian matrices. These examples provide a complete list of positive symmetric
cones (except the special cone of 3 × 3 matrices with octonion entries), accord-
ing to classification given by Faraut and Korányi [2]. Some of the formulations of
the bm-CLT turned out to be not quite satisfactory for later study [3] of Brownian
motions (with bm-independent increments), in particular for proving an analogue
of the classical Donsker theorem, where one considers dilations of a given interval
R+ ⊃ [s, t] 7→ [Ns,Nt] ⊂ R+ by positive integers N ∈ N for s < t ∈ R+.

A noncommutative version of this invariance principle has been formulated
by Speicher in [6] for the free Brownian motions and later by Muraki [4] for the
monotone Brownian motions, still with the totally ordered index set of positive
reals.

For an arbitrary positive cone Π one can also consider such dilations of inter-
vals Π ⊃ [ξ, η] 7→ [Nξ,Nη] ⊂ Π for ξ � η ∈ Π. However, the crucial problem is
to control how fast the dilated intervals grow. This has been established for positive
symmetric cones in [3] with introducing the notion of volume characteristic of a
positive symmetric cone.

Let us mention the related formulation of the bm-CLT from [3] for positive
symmetric cones in which the normalized partial sums are taken over dilated in-
tervals. The role of positive reals R+ is played by a positive symmetric cone Π
and the role of positive integers N ⊂ R+ by a discrete subset I ⊂ Π (for details
see [3]). We shall use the notation JN(ξ) := [0, Nξ] ∩ I for the finite subset of the
dilated interval which consists of elements of I.
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THEOREM 1.1. Let I ⊂ Π be as above and let {Xρ : ρ ∈ I} be bm-indepen-
dent self-adjoint elements in a noncommutative probability space (A, φ) with
φ(Xρ) = 0 and φ

(
(Xρ)

2
)
= 1. For ξ ∈ Π let

SN (ξ) :=
1

|JN(ξ)|
∑

ρ∈I, ρ�Nξ

Xρ

be the normalized partial sums (|A| denotes the cardinality of A). Then, for every
non-negative integer n the following limits exist:

lim
N

φ
((

SN (ξ)
)2n+1

)
= 0 and lim

N
φ
((

SN (ξ)
)2n)

= gn,

where (gn)n­0 is a sequence of (even) moments of a symmetric probability mea-
sure µ on R (depending on the positive symmetric cone Π) which satisfies the re-
currence g0 = g1 = 1 and gn =

∑n
k=1 γk · gk−1gn−k. The numbers γk = γk(Π),

k ∈ N, depend on the positive cone Π and are given by the formulas

(1.1) γk = γk(Π) :=
1

v(ξ)k

∫
0�ρ�ξ

v(ρ)k−1dρ,

where v(ξ) is the volume of the interval [0, ξ] ⊂ Π and the right-hand side does
not depend on ξ ∈ Π; thus these numbers are called the volume characteristics of
the positive symmetric cone Π (see [3], Theorem 2).

In this paper we shall study such bm-CLT for the following specific non-
symmetric positive cones:

1. the circular cones Cdθ := {(t;x) ∈ R+ × Rd−1 : ‖x‖ ¬ t · tan θ} defined
by parameters θ ∈ (0, π/2);

2. the sectors Ωd
u :=

{∑d
i=1 αiui : αi ­ 0,ui ∈ Rd, i = 1, . . . , d

}
spanned

by d-tuples u := (u1, . . . ,ud) of linearly independent unit vectors;
3. the Vinberg cone ΠV ⊂M3(R).
The circular cones are generalizations of the Lorentz cones: Λd

1 = Cdθ for θ =
π/4. The sectors Ωd

u generalize the positive symmetric cones Rd
+ ⊂ Rd which are

obtained for orthonormal bases {u1, . . . ,ud} ⊂ Rd. The Vinberg cone has already
been considered in [11], however, the formulation of the bm-CLT was different
there, not related to dilations of intervals (hence neither to the Donsker theorem),
and not related to the volume characteristics of the cone. In this study we shall
show the volume characteristics for the first two cases and the related property for
the Vinberg cone.

2. PRELIMINARIES

In this section we shall present basic objects of our study.

2.1. bm-independence. The general formulation of bm-independence was
given in [11] for families of algebras indexed by partially ordered sets. If (X ,�)
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is a partially ordered set with partial order �, then, for ξ, η ∈ X , we shall write
ξ ≺ η if ξ � η and ξ 6= η; we shall also write ξ ∼ η if ξ and η are comparable (i.e.
ξ � η or η � ξ) and ξ � η if ξ and η are incomparable.

DEFINITION 2.1. Let A be an algebra and let φ be a functional on A. We say
that a family {Aη : η ∈ X} of subalgebras of A, indexed by a partially ordered
set (X ,�), is bm-independent if the following two conditions hold:

BM1: If ξ, η, ρ ∈ X are such that ξ ≺ ρ � η or ξ � ρ � η or ξ ≺ ρ � η, then for
any a1 ∈ Aξ, a2 ∈ Aρ, a3 ∈ Aη we have

a1a2a3 = φ(a2) · a1a3.
BM2: If ξ1 � . . . � ξm � . . . � ξk ≺ . . . ≺ ξn for some 1 ¬ m ¬ k ¬ n and

ξ1, . . . , ξn ∈ X , with aj ∈ Aξj for 1 ¬ j ¬ n, then

φ(a1 . . . an) =
n∏

j=1

φ(aj).

Noncommutative random variables {aξ ∈ A : ξ ∈ X} are called bm-indepen-
dent if the subalgebras Aξ ⊂ A they generate are bm-independent. Let us recall
that in this definition one gets the monotone independence if X is totally ordered,
and the Boolean independence if X is totally disordered.

2.2. Positive symmetric cones. For the reader’s convenience we recall the no-
tion of a positive symmetric cone. Let (V, 〈·, ·〉) be a real vector space with an inner
product. A subset Ω ⊂ V is called a positive cone if it is closed under addition
of vectors and under multiplication by positive scalars (in particular, it is a convex
set). Let Ω be the closure; then the dual cone of Ω is Ω∗ := {v ∈ V : 〈v, u〉 > 0 for
all u ∈ Ω} (observe that 0 /∈ Ω∗). A positive cone Ω is called self-dual if Ω = Ω∗.
A cone Ω ⊂ V is called homogeneous if its group of automorphisms acts transi-
tively, i.e. for any u, v ∈ Ω there exists a linear mapping φ on V such that φ is
bijection on Ω and φ(u) = v. The cone Ω is called regular if the only element
v ∈ Ω for which also −v ∈ Ω is v = 0.

DEFINITION 2.2. A positive convex cone Ω⊂V is called a positive symmetric
cone if it is open, regular, self-dual and homogeneous. Otherwise, the cone is said
to be non-symmetric.

For details and classification of positive symmetric cones we refer to [2]. In
this paper we study the bm-CLT associated with some specific non-symmetric pos-
itive cones. The positive non-symmetric cones we consider are the following non-
self-dual ones.

2.3. The circular cones Cdθ . Circular cones [12] are defined for d ∈ N and
θ ∈ (0, π/2) (called a rotation angle) as

Cdθ := {x = (x1, x2:d) ∈ V = R× Rd−1 : (cos θ)‖x‖ ¬ x1}
= {x = (x1, x2:d) ∈ V = R× Rd−1 : ‖x2:d‖ ¬ x1 tan θ},
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where ‖ · ‖ denotes the Euclidean norm. The dual cone (Cdθ )∗ of Cdθ is given by

(Cdθ )∗ = {(x1, x2:d) ∈ V : (sin θ)‖x‖ ¬ x1} = Cdπ/2−θ,

so the circular cone Cdθ is non-symmetric, unless the rotation angle is θ = π/4, in
which case one gets the Lorentz cone

Λd
1 := {x = (x1, x2:d) ∈ V = R+ × Rd−1 : ‖x2:d‖ ¬ x1}.

The relation between Cdθ and Λd
1 is of the form

(2.1) Cdθ = MθΛ
d
1, where Mθ =

[
cot θ 0
0 Id−1

]
,

and Id−1 is the (d− 1)-dimensional unit matrix (see [12]).

2.4. The sectorial cones Ωd
u ⊂ Rd. For d ∈ N let u1, . . . ,ud ∈ Rd be arbitrary

linearly independent unit vectors (a linear basis). For u := (u1, . . . ,ud) define

Ωd
u :=

{ d∑
i=1

αiui : αi ­ 0 for 1 ¬ i ¬ d
}

as the set of all linear combinations of these vectors with non-negative coefficients.
Then Ωd

u is a positive non-symmetric cone (unless the basis u is orthogonal), and
its dual cone is (Ωd

u)
∗ = Ωd

v, where v := (v1, . . . ,vd) is the dual basis of u.

2.5. Vinberg’s cone ΠV . Let V be the five-dimensional real vector space of all
real three-dimensional matrices of the form

V :=

a =

 a1 a4 a5
a4 a2 0
a5 0 a3

 ∈M3(R) : a1, . . . , a5 ∈ R

,

with the inner product 〈a, b〉 =
∑3

i=1 aibi + 2
∑5

j=4 ajbj for a, b ∈ V . Then the
Vinberg cone ΠV ⊂ V is defined by the following three positivity conditions:

a1 ­ 0, a1a2 ­ a24, a1a3 ­ a25.

3. FORMULATION AND COMBINATORIAL REDUCTION OF THE bm-CLT

The formulation of the bm-CLT requires considering a proper discrete subset
I ⊂ Π, which would play the role of positive integers N ⊂ R, as an index set
for random variables. As mentioned in the Introduction, the idea is to consider
elements in Π with integer entries:

1. For the sectors Ωd
u ⊂ Rd we put I := Ωd

u ∩ Zd.
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2. For the circular cones Cdθ we put I := Cdθ ∩ (N× Zd−1).
3. For the Vinberg cone ΠV ⊂M3(R) we put I := ΠV ∩M3(Z).
In our bm-CLT we consider a sequence {Xρ : ρ ∈ I ⊂ Π} of bm-independent

self-adjoint elements in a noncommutative probability space (A, φ) with φ(Xρ)
= 0 and φ

(
(Xρ)

2
)
= 1. For ξ ∈ Π and N ∈ N we define the normalized partial

sums

(3.1) SN (ξ) :=
1

|JN(ξ)|
∑

ρ∈I, ρ�Nξ

Xρ.

Our goal is to show, for each n ∈ N, the existence of the limits

(3.2) gn := lim
N→∞

φ
((

SN (ξ)
)n)

.

Proving this existence, we shall conclude that the sequence (gn)n­0 is the moment
sequence of probability measure µΠ on R, as it is the limit of positive definite
sequences

{
φ
((
SN (ξ)

)n)
: n ∈ N

}
. Moreover, as we shall see, gn = 0 for odd

n ∈ N, so we shall conclude that the measure µΠ is symmetric on R. This measure
will be called the bm-Central Limit measure for the positive cone Π.

Moreover, we shall show that the sequence of even moments satisfies the re-
currence of the form g0 = g2 = 1 and

(3.3) g2n =
n∑

k=1

γkg2k−2g2n−2k, n ­ 1,

with some additional numbers (γn)n­1 which are specific to each cone. For the
sectorial cones and the circular cones these numbers are the volume characteristics
of the cone. For the Vinberg cone this is not the case, but the numbers depend on
two parameters related to the element ξ.

3.1. Combinatorial reduction of the proof of the bm-CLT. Now we describe
how the proof of the bm-CLT is reduced by some combinatorial considerations.
The details can be found in Section 6 of [11]. We shall use the notation [0, ξ]I :=
[0, ξ] ∩ I.

For fixed n ∈ N the quantity φ
((
SN (ξ)

)n) can be represented as the sum

(3.4) φ
((

SN (ξ)
)n)

=
1

|JN(ξ)|n
∑

ρ1,...,ρn∈JN(ξ)
φ(Xρ1 . . . Xρn).

As in [11], using quantitative arguments, one can show that the limit, as N →∞,
of the above is the same as if the summation was taken just over the sequences
(ρ1, . . . , ρn) which are associated with noncrossing pair partitions. Recall that this
means that each element in the sequence appears exactly twice and the pairings
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connecting the same elements have no crossings. From this observation it fol-
lows that the limit limN→∞ φ

((
SN (ξ)

)n)
= 0 if n is odd (there is no pair par-

tition of an odd number of elements). Hence we can restrict ourselves to even n
only; thus, in what follows we shall write 2n instead of n and consider the limit
limN→∞ φ

((
SN (ξ)

)2n) .
In the next step one shows that, in fact, the limit is the same if one restricts

the summation to sequences which are not only associated with noncrossing pair
partitions but are also bm-ordered. This means that the sequence (ρ1, . . . , ρ2n) is
such that if 1 ¬ i < j < k < l ¬ 2n and ρi = ρl, ρj = ρk, then it follows that
ρl = ρi ≺ ρj = ρk. In other words, the blocks of a pair partition are labelled by
the elements of the sequence in such a way that a block which is inside another one
has a bigger label. We shall denote by bmNCn2

(
JN(ξ)

)
the set of all such sequences

(ρ1, . . . , ρ2n) which, in addition, satisfy ρ1, . . . , ρ2n ∈ JN(ξ). Then, it turns out
that for (ρ1, . . . , ρ2n) ∈ bmNCn2

(
JN(ξ)

)
one gets φ(Xρ1 . . . Xρn) = 1. Hence one

concludes that computing the limit (as N → ∞) in (3.4) becomes equivalent to
proving the existence of the following

(3.5) lim
N→∞

φ
((

SN (ξ)
)2n)

= lim
N→∞

∣∣bmNCn2(JN(ξ))∣∣
|JN(ξ)|n

.

On the right-hand side of this equality we have cardinalities of purely combinato-
rial objects, so the proof of the bm-CLT depends on estimates of the ratio of the
quantities

∣∣bmNCn2(JN(ξ))∣∣ and |JN(ξ)|n.
The idea of dealing with this ratio is to consider the place at which the element

ρ1 in a sequence (ρ1, . . . , ρ2n) ∈ bmNCn2
(
JN(ξ)

)
appears again, as a consequence of

the fact that the sequence is associated with a pair partition. Since the pair partition
has no crossings, it follows that ρ1 = ρj if and only if j is even. Thus, we put j =
2k and write ρ1 = ρ2k for some 1 ¬ k ¬ n and this splits the set bmNCn2

(
JN(ξ)

)
into the disjoint sum

(3.6) bmNCn2
(
JN(ξ)

)
=

n⋃
k=1

bmNCn2
,k
(
JN(ξ)

)
.

Now, given ρ1 = ρ2k ∈ JN(ξ) and (ρ1, . . . , ρ2n) ∈ bmNCn2
(
JN(ξ)

)
, the elements

ρ2, . . . , ρ2k−1 must satisfy ρj ∈ (ρ1, Nξ] for 2 ¬ j ¬ 2k − 1, and the other ele-
ments ρi ∈ JN(ξ), with 2k + 1 ¬ i ¬ 2n, can be arbitrary. The number of such
subsequences (ρ1, . . . , ρ2k) will be (approximately, as N →∞) the same as if the
elements ρ2, . . . , ρ2k−1 satisfied ρ2, . . . , ρ2k−1 ∈ (0, Nξ− ρ1]. This number, how-
ever, is the cardinality |bmNCk−12 ([0, Nξ − ρ1])| (in particular, it does not depend on
translation), hence we can write
(3.7)∣∣bmNCn2(JN(ξ))∣∣

|JN(ξ)|n
≈

n∑
k=1

∑
ρ∈JN(ξ)

|bmNCk−12 ([0, Nξ − ρ]I)|
|JN(ξ)|k

·
∣∣bmNCn−k2

(
JN(ξ)

)∣∣
|JN(ξ)|n−k

.
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At this point we shall start the induction on n, assuming that for all 1 ¬ j ¬ n− 1
and for all ρ ∈ I the following limits exist:

(3.8) gj := lim
N→∞

|bmNCj2JN(ρ)|
|JN(ρ)|j

.

Hence the right-hand side of (3.7) can be simplified, so that we get∣∣bmNCn2(JN(ξ))∣∣
|JN(ξ)|n

≈
n∑

k=1

gn−k
∑

ρ∈JN(ξ)

|bmNCk−12 ([0, Nξ − ρ]I)|
|JN(ξ)|k

(3.9)

≈
n∑

k=1

gn−k
∑

ρ∈JN(ξ)

|bmNCk−12 ([0, ρ]I)|
|JN(ξ)|k

,

where the second approximation results from the substitution Nξ − ρ 7→ ρ. Then,
by similar estimates to those in Section 3 of [3] and in Proposition 7 of [11] one
can show that

(3.10)
∑

ρ∈JN(ξ)

|bmNCk−12 ([0, ρ]I)|
|JN(ξ)|k

≈ gk−1
|[0, Nξ]|k

∑
ρ∈[0,Nξ]

|[0, ρ]I|k−1.

The next step is to use the approximation of the cardinality of an interval by
the volume. Let v(ρ) denote the Euclidean volume of the interval [0, ρ] for ρ ∈ Π
(each of the cones Π is considered to be embedded in Rd for the minimal dimension
d ∈ N). Then we shall use the approximation v(ρ) ≈ |[0, ρ]I| so that

lim
N→∞

gk−1
|[0, Nξ]I|k

∑
ρ∈[0,Nξ]I

|[0, ρ]I|k−1 = lim
N→∞

gk−1
v(Nξ)k

∑
ρ∈[0,Nξ]I

v(ρ)k−1,

and (3.10) can be written as

(3.11)
∑

ρ∈JN(ξ)

|bmNCk−12 ([0, ρ]I)|
|JN(ξ)|k

≈ gk−1
v(Nξ)k

∑
ρ∈[0,Nξ]I

v(ρ)k−1.

Since the right-hand side of (3.11) can be written by using the integral form, that is,

lim
N→∞

gk−1
v(Nξ)k

∑
ρ∈[0,Nξ]I

v(ρ)k−1 = lim
N→∞

gk−1
v(Nξ)k

Nξ∫
0

v(ρ)k−1 dρ,

the computation of the limit (3.5) is equivalent to

(3.12) lim
N→∞

∣∣bmNCn2(JN(ξ))∣∣
|JN(ξ)|n

=
n∑

k=1

gn−kgk−1 lim
N→∞

1

v(Nξ)k

Nξ∫
0

v(ρ)k−1 dρ.
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Therefore, if we show that for each k ­ 1 the limit

(3.13) γk = lim
N→∞

1

v(Nξ)k

∫
ρ∈[0,Nξ]

v(ρ)k−1

exists, then (3.5) would become

(3.14) lim
N→∞

φ
((

SN (ξ)
)2n)

= lim
N→∞

∣∣bmNCn2(JN(ξ))∣∣
|JN(ξ)|n

=
n∑

k=1

gn−kgk−1γk,

proving, by induction on n, the existence of the limit gn on the left-hand side and,
in addition, the recurrence

(3.15) gn =
n∑

k=1

gn−kgk−1γk.

These problems will be discussed in the next sections where we shall prove
that for sectorial and circular cones the sequence (γk)k­1 exists and represents the
volume characteristics of the cone (i.e. it does not depend on ξ and N ) and exists
but depends on two parameters related to ξ for the Vinberg cone.

4. PROOFS OF THE bm-CLT ASSOCIATED WITH SECTORIAL AND CIRCULAR CONES

In this section we shall prove the existence of the volume characteristic for
the sectorial and circular non-symmetric cones. This means that we shall show the
formula (3.13) for these cones where the sequence (γk)k­1 depends on the cone Π
but does not depend on a given ξ ∈ Π. By v(ξ) we denote the Euclidean volume
v of the interval [0, ξ] ⊂ Π (recall that, by definition, Π ⊃ [0, ξ] := {ρ ∈ Π : 0 �
ρ � ξ}).

THEOREM 4.1 (Volume characteristic for sectorial and circular cones). Let
Π = Ωd

u or Π = Cdθ . Then there exists a sequence (γk)k­1 depending on Π and
such that for every ξ ∈ Π

γk = γk(Π) :=
1(

v(ξ)
)k ∫

ρ∈[0,ξ]Π

(
v(ρ)

)k−1
d(ρ).

The sequences are given by the formulas related to the specific symmetric cones:
1. For the sectors Ωd

u ⊂ Rd we have

γk = γuk =
1

|D|
γ′k,

where D := det(u) is the determinant of the vectors u = (u1, . . . ,ud) and the
sequence γ′k = 1/kd corresponds to Π = Rd

+.
2. For the circular cone Cdθ we have γk = γθk = γ′k and the sequence γ′k cor-

responds to the Lorentz cone Π = Λd
1.
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4.1. Proof of volume characteristic and the bm-CLT for sectorial cones Ωd
u.

For a d-tuple u :=(u1, . . . ,ud) of linearly independent vectors ui ∈ Rd (1¬ i¬d)
consider the sectorial cone Ωd

u ⊂ Rd and an element ξ =
∑d

i=1 aiui ∈ Ωd
u. Let

D := det(u) be the determinant of these vectors (i.e. of the matrix whose columns
are these vectors). Then the Euclidean volume v(ξ) of the interval [0, ξ] ⊂ Ωd

u is
given by the formula

(4.1) v(ξ) = |D| ·
d∏

i=1

ai.

Therefore, for k ∈ N, with the notation ρ := (b1, . . . , bd) we have
(4.2)∫

[0,ξ]

v(ρ)k−1 dρ = |D|k−1
d∏

i=1

ai∫
0

(bi)
k−1 dbi = |D|k−1

d∏
i=1

aki
k

=
v(ξ)k

|D|
· 1
kd

.

Since, for the symmetric cone Rd
+, 1/kd = γ′k is the volume characteristic se-

quence, we get

(4.3)
1

v(ξ)k

∫
[0,ξ]

v(ρ)k−1 dρ =
γ′k
|D|

=: γk,

which does not depend on ξ. Hence, putting Nξ instead of ξ, one can see that the
formula (3.13) holds true.

4.2. Proof of volume characteristic and of the bm-CLT for circular cones Cdθ .
For Mθ defined by (2.1) consider the transformation

(4.4) Λd
1 3 ξ = (t;x2, . . . , xd) 7−→Mθ(ξ) := (t cot θ;x2, . . . , xd) ∈ Cdθ .

Recall that the Euclidean volume v(ξ) of the interval [0, ξ] ⊂ Λd
1 in the Lorentz

cones is given by

(4.5) v(ξ) = BΛ

(
d

2
,
d

2

)
·
(
detΛ(ξ)

)d/2
,

where BΛ(p, q) is the Euler beta function for the Lorentz cone and for Λd
1 3 ξ =

(t;x2, . . . , xd) one defines detΛ(ξ) := t2 − x22 − . . .− x2d as the associated gener-
alized determinant (for details we refer to [2] and [3]).

Since ρ �C ξ if and only if M−1θ (ρ) �Λ M−1θ (ξ), it follows that

(4.6) [0, ξ]C = Mθ([0,M
−1
θ ξ]Λ).

The transformations Mθ and M−1θ are linear in Rd, so they change the volumes
by their determinants. If v([0, ξ]C) denotes the Euclidean volume of the interval
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[0, ξ] ⊂ Cdθ in the circular cone and v([0, ξ]Λ) denotes the Euclidean volume of
the interval [0, ξ] ⊂ Λd

1 in the Lorentz cone, then one gets the following relation
between the volumes:

(4.7) v([0, ξ]C) = v
(
Mθ([0,M

−1
θ ξ]Λ)

)
= cot

(
θ
)
· v

(
[0,M−1θ (ξ)]Λ

)
.

Consequently, we can compute the integrals (for k ­ 1 and ξ ∈ Cdθ ):∫
ρ∈[0,ξ]C

(
v([0, ρ]C)

)k−1
dρ =

∫
ρ∈[0,ξ]C

(
cot(θ) · v

(
[0,M−1θ (ρ)]Λ

))k−1
dρ

= cotk−1(θ)
∫

ρ∈[0,ξ]C

(
v
(
[0,M−1θ (ρ)]Λ

))k−1
dρ

= cotk−1(θ)
∫

η∈[0,M−1
θ (ξ)]Λ

(
v([0, η]Λ)

)k−1
cot(θ)dη

= cotk(θ)
∫

η∈[0,M−1
θ (ξ)]Λ

(
v([0, η]Λ)

)k−1
dη.

By the volume characteristic theorem for the Lorentz cone Λd
1 there exists a se-

quence (γ′k)k­1 such that the last integral is equal to

(4.8)
∫

η∈[0,M−1
θ (ξ)]Λ

(
v([0, η]Λ)

)k−1
dη = γ′k ·

(
v
(
[0,M−1θ (ξ)]Λ

))k
.

Hence

(4.9)
∫

ρ∈[0,ξ]C

(
v([0, ρ]C)

)k−1
dρ = γ′k ·

[
cot(θ) · v

(
[0,M−1θ (ξ)]Λ

)]k
,

so

(4.10)
∫

ρ∈[0,ξ]C

(
v([0, ρ]C)

)k−1
dρ = γ′k · v([0, ξ]C)k.

This shows that for the circular cone Cdθ we have the same volume characteristic as
for the Lorentz cone:

(4.11) γ′k :=
1

v([0, ξ]C)k

∫
ρ∈[0,ξ]C

(
v([0, ρ]C)

)k−1
dρ = γk.

4.3. The bm-CLT for the Vinberg cone. For the Vinberg cone ΠV ⊂ M3(R)
the sequence (γk)k­1 is not independent of ξ ∈ ΠV . To show its existence and
description, we first introduce the following transformation:

(4.12) M3(R) 3 A = (aij)
3
i,j=1 7→ T (A) =

(
aij√
aiiajj

)3

i,j=1

∈M3(R),



194 L. Oussi and J. Wysoczański

defined only for matrices with nonzero entries on diagonal. Since in the Vinberg
cone a matrix ξ ∈ ΠV enjoys this property, the transformation ξ 7→ T (ξ) gives

ΠV 3 ξ =

 a1 a4 a5
a4 a2 0
a5 0 a3

 7−→ T (ξ) :=

 1 α β
α 1 0
β 0 1

 =: ξ(α, β) ∈ ΠV ,

where

(4.13) α :=
a4√
a1a2

, β :=
a5√
a1a3

with −1 ¬ α, β ¬ 1.
Now, we shall compute the volume of an interval (0, ξ] ⊂ ΠV . If we put

(4.14) ξ =

 a1 a4 a5
a4 a2 0
a5 0 a3

, ρ =

 b1 b4 b5
b4 b2 0
b5 0 b3

,
then ρ ∈ (0, ξ] is equivalent to ρ ∈ ΠV and ξ − ρ ∈ ΠV , which is satisfied if and
only if 0 < bi ¬ ai for i = 1, 2, 3 and

(4.15) (aj − bj)
2 ¬ (a1 − b1)(aj−2 − bj−2), b2j ¬ b1bj−2 for j = 4, 5.

Let Ej := {bj ∈ R : (aj − bj)
2 ¬ (a1− b1)(aj−2− bj−2), b2j ¬ b1bj−2} for j =

4, 5. Then the volume v(ξ) of the interval (0, ξ] ⊂ ΠV can be represented as the
multiple integral:

(4.16) v(ξ) =
a1∫
0

a2∫
0

a3∫
0

( ∫
E4

∫
E5

db5 db4
)
db3 db2 db1.

Dividing both inequalities in (4.15) by a1aj−2 and putting

(4.17)
xi := bi/ai for i = 1, 2, 3,

xj := bj/
√
a1aj−2 for j = 4, 5,

one gets x1, x2, x3 ∈ (0, 1] and

(4.18)
(α− x4)

2 ¬ (1− x1)(1− x2), x24 ¬ x1x2,

(β − x5)
2 ¬ (1− x1)(1− x3), x25 ¬ x1x3,

with α, β given by (4.13). Observe that these conditions are equivalent to ζ ∈
[0, ξ(α, β)] ⊂ ΠV for

ζ :=

 x1 x4 x5
x4 x2 0
x5 0 x3

.
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Therefore, putting for j = 4, 5

(4.19)
Dj(s) := {xj ∈ [−1, 1] : x2j ¬ x1xj−2, (s− xj)

2 ¬ (1− x1)(1− xj−2)}

and using the above change of variables (4.13) in the integrals (4.16), for which the
Jacobian is a21(a2a3)

3/2, we can write the volume v(ξ) of the interval (0, ξ] ⊂ ΠV
as the integral

v(ξ) = a21(a2a3)
3/2 ·

1∫
0

1∫
0

1∫
0

( ∫
D4(α)

∫
D5(β)

dx5 dx4
)
dx1 dx2 dx3(4.20)

= a21(a2a3)
3/2 · v

(
ξ(α, β)

)
= a21(a2a3)

3/2 ·Υ(α, β),

where the function Υ(α, β) = v
(
ξ(α, β)

)
= v

(
T (ξ)

)
represents the volume of the

interval [0, ξ(α, β)] ⊂ ΠV .

PROPOSITION 4.1. For the Vinberg cone ΠV and an element ξ ∈ ΠV , with
T (ξ) = ξ(α, β), there exists a sequence

(
γk(α, β)

)
k­1 such that

(4.21) γk(α, β) =
1

v(ξ)k

ξ∫
0

v(ρ)m−1dρ.

Given α, β ∈ [−1, 1], the sequence γk(α, β) can be expressed as
(4.22)

γk(α, β) =
1

Υ(α, β)k

1∫
0

1∫
0

1∫
0

∫
D4(α)

∫
D5(β)

[
x21(x2x3)

3/2Υ

(
x4√
x1x2

,
x5√
x1x3

)]k−1
dx,

where we used the abbreviation dx := dx5dx4dx3dx2dx1.

P r o o f. The formula (4.20) can be written as

v(ξ) = a21(a2a3)
3/2 ·Υ

(
a4√
a1a2

,
a5√
a1a3

)
and in the proof we shall use this form for other elements of the Vinberg cone ΠV .
Using the substitution (4.17) and the notation dx := dx5dx4 dx3dx2dx1, db :=
db5db4 db3db2db1 and (4.14), we can write

ξ∫
0

v(ρ)k−1 dρ =
a1∫
0

a2∫
0

a3∫
0

∫
E4

∫
E5

[
b21(b2b3)

3/2Υ

(
b4√
b1b2

,
b5√
b1b3

)]k−1
db

= [a21(a2a3)
3/2]k

1∫
0

1∫
0

1∫
0

∫
D4(α)

∫
D5(β)

[
x21(x2x3)

3/2Υ

(
x4√
x1x2

,
x5√
x1x3

)]k−1
dx

=

[
v(ξ)

Υ(α, β)

]k 1∫
0

1∫
0

1∫
0

∫
D4(α)

∫
D5(β)

[
x21(x2x3)

3/2Υ

(
x4√
x1x2

,
x5√
x1x3

)]k−1
dx
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(observe that bj/
√
b1bj−2 = xj/

√
x1xj−2 for j = 4, 5). Consequently, we get

1

v(ξ)k

ξ∫
0

v(ρ)k−1 dρ

=
1

Υ(α, β)k

1∫
0

1∫
0

1∫
0

∫
D4(α)

∫
D5(β)

[
x21(x2x3)

3/2Υ

(
x4√
x1x2

,
x5√
x1x3

)]k−1
dx,

where the right-hand side depends only on k ∈ N and α, β ∈ [−1, 1] and means
γk(α, β). This proves the proposition. �

REMARK 4.1. Since for N ∈ N and ξ ∈ ΠV we have T (Nξ) = T (ξ), it fol-
lows that

(4.23) γk(α, β) =
1

v(Nξ)k

Nξ∫
0

v(ρ)m−1dρ.

This shows that the limit in (3.13) exists, which completes the proof of the bm-CLT
for the Vinberg cone.
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