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Abstract. Ranked set sampling (RSS) is a data collection method that
allows us to direct attention toward measurements of more representative
sample units. This article deals with estimating a time-dependent reliability
measure under a generalization of the RSS. Some results concerning optimal
properties of the proposed estimator are presented. Monte Carlo simulation
is employed to assess performance of the estimator. A sport data set is finally
analyzed.
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1. INTRODUCTION

When the cost of identifying sampling units and approximately (judgment)
ranking them according to the variable of interest is small compared to the cost
of making formal quantifications, ranked set sampling (RSS) results in improved
statistical inference over simple random sampling (SRS) of comparable size. This
efficiency could be traced to the additional information provided by units that are
ranked, but not actually quantified, and it holds across a wide variety of estimation
and testing problems.

The RSS was first proposed by McIntyre [9] for use in estimating average
yields in agriculture. While actually measuring a yield is costly because one must
harvest the crops, an expert may be able to produce an accurate ranking of yields
(in adjacent plots) based on a visual inspection. In general, the judgment ranking
of the units in this scheme is usually done by using expert opinion, concomitant
variable, or a combination of them, and need not be exact. In the decades since
the original work by McIntyre [9] had appeared, the RSS was applied in a variety
of fields including forestry, environmental science and medicine. The reader is
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referred to Chen [5] for some novel applications in areas such as clinical trials and
genetic quantitative trait loci mappings. Also, a recent review of RSS can be found
in Wolfe [13] and the references therein.

The RSS design can be summarized as follows:
1. Draw m random samples, each of size m, from the target population.
2. Apply judgment ordering, by any cheap method, on the elements of the ith

(i = 1, . . . ,m) sample and identify the ith smallest unit.
3. Actually measure the m identified units in step 2.
4. Repeat steps 1–3, k times (cycles), if necessary, to obtain a ranked set sam-

ple of size mk.
Let Xij be the ith judgment order statistic from the jth cycle. Then, the re-

sulting ranked set sample is denoted by {Xij : i = 1, . . . ,m ; j = 1, . . . , k}. The
design parameter m is called a set size.

In practice, m should be kept small (e.g., 2–7) because judgment ranking with
large set size is prone to ranking errors. For highly skewed distributions, small
values of m do not lead to significant efficiency gain in estimating the population
mean (see Takahasi and Wakimoto [12]). Multistage ranked set sampling (MSRSS)
is a generalization of RSS that allows us to achieve higher efficiency, given a fixed
set size.

The MSRSS scheme can be described as follows:
1. Randomly identify mr+1 units from the population of interest, where r is

the number of stages.
2. Allot the mr+1 units randomly into mr−1 sets of m2 units each.
3. For each set in step 2, apply 1–2 of the RSS procedure explained above,

to get a (judgment) ranked set of size m. This step gives mr−1 (judgment) ranked
sets, each of size m.

4. Without actual measuring of the ranked sets, apply step 3 on the mr−1

ranked sets to gain mr−2 second stage (judgment) ranked sets, each of size m.
5. Repeat step 3, without any actual measurement, until an rth stage (judg-

ment) ranked set of size m is acquired.
6. Actually measure the m identified units in step 5.
7. Repeat steps 1–6, k times (cycles), if necessary, to obtain an rth stage

ranked set sample of size mk.
Similar to our previous notation, {X(r)

ij : i = 1, . . . ,m ; j = 1, . . . , k} denotes
the rth stage ranked set sample. Clearly, the especial case of MSRSS with r = 1
corresponds to RSS. Al-Saleh and Al-Kadiri [1] studied the case r = 2 which is
known as double ranked set sampling. Al-Saleh and Al-Omari [2] utilized MSRSS
in estimating the population mean. Al-Saleh and Samuh [3] investigated the distri-
bution function and the median estimation based on MSRSS.

The so-called stress-strength model constitutes a useful tool for defining a
reliability model. It is applicable in situations where a device, characterized by a
random strength X , is subjected to a random stress Y during a certain time interval.
Therefore, its reliability in the given interval may be evaluated as the probability
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that X is greater than Y , i.e. θ = P (X > Y ). Thanks to its potential as a general
measure of the difference between two populations, θ has found applications in
different fields such as economics, quality control, psychology, medicine and clin-
ical trials. In medicine, for example, if X and Y are respectively the outcomes of
experimental and control groups, then θ can be interpreted as the effectiveness of
treatment. Kotz et al. [6] present the theoretical and practical results on the the-
ory and applications of the stress-strength relationships in industrial and economic
systems. In this article, we study estimating an extended concept of stress-strength
reliability in MSRSS setting.

The new reliability estimator is presented in Section 2, and its properties are
investigated in Section 3. Performance of the estimator is assessed by using Monte
Carlo simulation whose results are reported in Section 4. A sport data set is ana-
lyzed in Section 5. Final conclusions are given in Section 6.

2. RELIABILITY ESTIMATION

Stress-strength models were introduced by Birnbaum [4] who proposed a non-
parametric estimator of θ based on the Mann–Whitney statistic for the case where
X and Y are independent. The density, distribution and survival functions of X
are denoted by f , F and F̄ , respectively. The notation g, G and Ḡ will be used for
similar functions associated with Y .

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from f and
g, respectively. The estimator of θ is given by

θ̂ =
1

mn

m∑
i=1

n∑
j=1

I(Xi > Yj),

where I(·) is the indicator function. Sengupta and Mukhuti [10] developed an un-
biased estimator of θ in RSS. They showed that the proposed estimator is more
efficient than θ̂, even in the presence of ranking errors.

There are several methods to compare lifetimes of two components in reliabil-
ity theory. Comparing the survival functions, the failure rates and the mean residual
lifetime functions are among the most popular approaches. Let the random vari-
ables X and Y be the lifetimes of two systems. Assume that both systems are op-
erating at time t > 0. Then the residual lifetimes of them are Xt = (X − t|X > t)
and Yt = (Y − t|Y > t), respectively. Incorporating the age of systems, Zardasht
and Asadi [14] introduced a time-dependent criterion to compare the two residual
lifetimes. They considered the function θ(t) = P (Xt > Yt). Note that θ(t) can be
written as

θ(t) =
θ1(t)

θ2(t)
,

where θ1(t) = P (X > Y > t) and θ2(t) = P (X > t, Y > t). Using simple ran-
dom samples X1, . . . , Xm and Y1, . . . , Yn from f and g, an estimate of θ(t) can be
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constructed as

θ̂(t) =
θ̂1(t)

θ̂2(t)
,

where

θ̂1(t) =
1

mn

m∑
i=1

n∑
j=1

I(Xi > Yj > t)

and

θ̂2(t) =
1

mn

m∑
i=1

n∑
j=1

I(Xi > t, Yj > t).

Although θ̂1(t) and θ̂2(t) are unbiased estimators of θ1(t) and θ2(t), respectively,
θ̂(t) is only asymptotically unbiased. Mahdizadeh and Zamanzade [8] studied es-
timation of θ(t) from ranked set samples. This work deals with the same problem
in MSRSS setup.

Toward this end, we need two multistage ranked set samples from f and g. It is
assumed that the samples are drawn using a single cycle. The results in the general
setup are then easily followed. If X(r)

i , i = 1, . . . ,m, and Y
(s)
j , j = 1, . . . , n, are

the two samples, then

θ̂r,s(t) =
θ̂r,s1 (t)

θ̂r,s2 (t)

is a natural estimator of θ(t), where

θ̂r,s1 (t) =
1

mn

m∑
i=1

n∑
j=1

I(X
(r)
i > Y

(s)
j > t)

and

θ̂r,s2 (t) =
1

mn

m∑
i=1

n∑
j=1

I(X
(r)
i > t, Y

(s)
j > t).

Let f (r)
i , F (r)

i and F̄
(r)
i be the density, distribution and survival functions of

X
(r)
i , respectively. The notation g

(s)
j , G(s)

j and Ḡ
(s)
j will be used for similar func-

tions associated with Y
(s)
j . Suppose the ith order statistic of an (r − 1)st stage

ranked set sample of size m from f , say Z
(r−1)
1 , . . . , Z

(r−1)
m , is denoted by Z

(r−1)
(i) .

Under the assumption of no error in judgment ranking, we have X
(r)
i

d
= Z

(r−1)
(i) .

The two identities

(2.1)
1

m

m∑
i=1

f
(r)
i (x) = f(x),

1

n

n∑
j=1

g
(s)
j (y) = g(y),

observed by Al-Saleh and Al-Omari [2], play a central role in the next section.
These identities can be stated in terms of distribution functions as well.
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3. THEORETICAL PROPERTIES

We begin with deriving the expectations and variances of θ̂r,s1 (t) and θ̂r,s2 (t),
and comparing them with similar expressions in SRS.

PROPOSITION 3.1. The estimators θ̂r,s1 (t) and θ̂r,s2 (t) are unbiased.

P r o o f. It is verified by employing equations in (2.1). �

The following two results provide the variance expressions for components of
θ̂(t) and θ̂r,s(t).

PROPOSITION 3.2. The variances of θ̂1(t) and θ̂r,s1 (t) are given by

(3.1) m2n2Var
(
θ̂1(t)

)
= m(m− 1)n(n− 1)θ21(t) + nm(m− 1)E{F̄ (Y )I(Y > t)}2

+mn(n− 1)E{G(X)−G(t)}2 +mnθ1(t)−m2n2θ21(t)

and

(3.2) m2n2Var
(
θ̂r,s1 (t)

)
= E

{
m2

[ n∑
j=1

F̄ (Y
(s)
j )I(Y

(s)
j > t)

]2 − m∑
i=1

[ n∑
j=1

F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)

]2}
+mE

{
n2[G(X)−G(t)]2 −

n∑
j=1

[G
(s)
j (X)−G

(s)
j (t)]2

}
+mnθ1(t)−m2n2θ21(t).

P r o o f. It is readily seen that

(3.3) m2n2E
(
θ̂1(t)

)2
= α1 + α2 + α3 + α4,

where

α1 = E
{ m∑

i 6=i′=1

n∑
j 6=j′=1

I(Xi > Yj > t)I(Xi′ > Yj′ > t)
}

(3.4)

= m(m− 1)n(n− 1)θ21(t),

α2 = E
{ n∑

j=1

m∑
i 6=i′=1

I(Xi > Yj > t)I(Xi′ > Yj > t)
}

(3.5)

=
n∑

j=1

m∑
i 6=i′=1

EE
{
I(Xi > Yj > t)I(Xi′ > Yj > t)

∣∣Yj}
=

n∑
j=1

m∑
i 6=i′=1

E{F̄ (Y )I(Y > t)}2 = nm(m− 1)E{F̄ (Y )I(Y > t)}2,
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α3 = E
{ m∑

i=1

n∑
j 6=j′=1

I(Xi > Yj > t)I(Xi > Yj′ > t)
}

(3.6)

=
m∑
i=1

n∑
j 6=j′=1

EE
{
I(Xi > Yj > t)I(Xi > Yj′ > t)

∣∣Xi

}
=

m∑
i=1

n∑
j 6=j′=1

E{G(X)−G(t)}2 = mn(n− 1)E{G(X)−G(t)}2

and

α4 = E
{ m∑

i=1

n∑
j=1

I(Xi > Yj > t)
}
= mnθ1(t).(3.7)

By (3.3)–(3.7) and unbiasedness of θ̂1(t), the proof of the first part is complete.
Similarly,

(3.8) m2n2E
(
θ̂r,s1 (t)

)2
= β1 + β2 + β3,

where

β1 = E
{ m∑

i 6=i′=1

n∑
j 6=j′=1

I(X
(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j′ > t)

(3.9)

+
n∑

j=1

m∑
i 6=i′=1

I(X
(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j > t)

}
=

m∑
i 6=i′=1

n∑
j 6=j′=1

EE
{
I(X

(r)
i >Y

(s)
j >t)

∣∣Y (s)
j

}
EE

{
I(X

(r)
i′ >Y

(s)
j′ >t)

∣∣Y (s)
j′

}
+

n∑
j=1

m∑
i 6=i′=1

EE
{
I(X

(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j > t)

∣∣Y (s)
j

}
= E

{ m∑
i 6=i′=1

n∑
j 6=j′=1

[F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)][F̄

(r)
i′ (Y

(s)
j′ )I(Y

(s)
j′ > t)]

+
n∑

j=1

m∑
i 6=i′=1

[F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)][F̄

(r)
i′ (Y

(s)
j )I(Y

(s)
j > t)]

}
= E

{[ m∑
i=1

n∑
j=1

F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)

]2 − m∑
i=1

n∑
j=1

[F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)]2

−
m∑
i=1

n∑
j 6=j′=1

[F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)][F̄

(r)
i (Y

(s)
j′ )I(Y

(s)
j′ > t)]

}
= E

{
m2

[ n∑
j=1

F̄ (Y
(s)
j )I(Y

(s)
j > t)

]2 − m∑
i=1

[ n∑
j=1

F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)

]2}
,
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β2 = E
{ m∑

i=1

n∑
j 6=j′=1

I(X
(r)
i > Y

(s)
j > t)I(X

(r)
i > Y

(s)
j′ > t)

}
(3.10)

= m
n∑

j 6=j′=1

E{I(X > Y
(s)
j > t)I(X > Y

(s)
j′ > t)}

= m
n∑

j 6=j′=1

EE
{
I(X > Y

(s)
j > t)I(X > Y

(s)
j′ > t)

∣∣X}
= m

n∑
j 6=j′=1

E{[G(s)
j (X)−G

(s)
j (t)][G

(s)
j′ (X)−G

(s)
j′ (t)]}

= mE
{
n2[G(X)−G(t)]2 −

n∑
j=1

[G
(s)
j (X)−G

(s)
j (t)]2

}
and

(3.11) β3 = E
{ m∑

i=1

n∑
j=1

I(X
(r)
i > Y

(s)
j > t)

}
= mnθ1(t).

Now, the second part follows from (3.8)–(3.11) and unbiasedness of θ̂r,s1 (t). �

PROPOSITION 3.3. The variances of θ̂2(t) and θ̂r,s2 (t) are given by

(3.12) m2n2Var
(
θ̂2(t)

)
= [m(m− 1)F̄ 2(t)][n(n− 1)Ḡ2(t)] +mF̄ (t)[n(n− 1)Ḡ2(t)]

+ nḠ(t)[m(m− 1)F̄ 2(t)] +mnθ2(t)−m2n2θ22(t)

and

(3.13) m2n2Var
(
θ̂r,s2 (t)

)
=

[
m2F̄ 2(t)−

m∑
i=1

(
F̄

(r)
i (t)

)2][
n2Ḡ2(t)−

n∑
j=1

(
Ḡ

(s)
j (t)

)2]
+mF̄ (t)

[
n2Ḡ2(t)−

n∑
j=1

(
Ḡ

(s)
j (t)

)2]
+ nḠ(t)

[
m2F̄ 2(t)−

m∑
i=1

(
F̄

(r)
i (t)

)2]
+mnθ2(t)−m2n2θ22(t).

P r o o f. It is similar to the proof of the previous result. �

It is possible to find approximations for variances of θ̂(t) and θ̂r,s(t) using the
first-order Taylor series expansion. These expressions, however, are not helpful in
establishing superiority of the RSS-based estimator over the SRS estimator. In the
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sequel, we show that the numerator and denominator of θ̂r,s(t) are more efficient
than similar components in θ̂(t).

The variances of θ̂1(t) and θ̂r,s1 (t) are compared in the next proposition.

PROPOSITION 3.4. For any m,n  2 and r, s  1,

Var
(
θ̂r,s1 (t)

)
¬ Var

(
θ̂1(t)

)
.

P r o o f. Using equations (3.1) and (3.2), it can be seen that

m2n2
[
Var

(
θ̂1(t)

)
−Var

(
θ̂r,s1 (t)

)]
= ζ1 + ζ2 + ζ3,

where

ζ1 = E
{ m∑

i=1

[ n∑
j=1

F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)

]2 −m
[ n∑
j=1

F̄ (Y
(s)
j )I(Y

(s)
j > t)

]2}
= E

{ m∑
i=1

( n∑
j=1

[F̄
(r)
i (Y

(s)
j )I(Y

(s)
j > t)− F̄ (Y

(s)
j )I(Y

(s)
j > t)]

)2}
,

ζ2 = mn(n− 1)E{G(X)−G(t)}2

−mE
{
n2[G(X)−G(t)]2 −

n∑
j=1

[G
(s)
j (X)−G

(s)
j (t)]2

}
= mE

{ n∑
j=1

[G
(s)
j (X)−G

(s)
j (t)]2 − n[G(X)−G(t)]2

}
= mE

{ n∑
j=1

(
[G

(s)
j (X)−G

(s)
j (t)]− [G(X)−G(t)]

)2}
,

ζ3 = m(m− 1)n(n− 1)θ21(t) + nm(m− 1)E{F̄ (Y )I(Y > t)}2

−m(m− 1)E
{[ n∑

j=1

F̄ (Y
(s)
j )I(Y

(s)
j > t)

]2}
= m(m− 1)

[(
1− 1

n

)( n∑
j=1

E{F̄ (Y
(s)
j )I(Y

(s)
j > t)}

)2
−

n∑
j 6=j′=1

E{F̄ (Y
(s)
j )I(Y

(s)
j > t)}E{F̄ (Y

(s)
j′ )I(Y

(s)
j′ > t)}

]
= m(m− 1)

[ n∑
j=1

E2{F̄ (Y
(s)
j )I(Y

(s)
j > t)}

− 1

n

( n∑
j=1

E{F̄ (Y
(s)
j )I(Y

(s)
j > t)}

)2]
= m(m− 1)

n∑
j=1

E2{F̄ (Y
(s)
j )I(Y

(s)
j > t)− F̄ (Y )I(Y > t)}.

Since ζi’s are non-negative, we have shown the result. �
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The next proposition compares the variances of θ̂2(t) and θ̂r,s2 (t).

PROPOSITION 3.5. For any m,n  2 and r, s  1,

Var
(
θ̂r,s2 (t)

)
¬ Var

(
θ̂2(t)

)
.

P r o o f. Using equations (3.12) and (3.13), it is easy to see that

m2n2
[
Var

(
θ̂2(t)

)
−Var

(
θ̂r,s2 (t)

)]
= η1 + η2 + η3,

where

η1 = mF̄ (t)
[ n∑
j=1

(
Ḡ

(s)
j (t)

)2 − nḠ2(t)
]
+ nḠ(t)

[ m∑
i=1

(
F̄

(r)
i (t)

)2 −mF̄ 2(t)
]
,

η2 = m2F̄ 2(t)
[ n∑
j=1

(
Ḡ

(s)
j (t)

)2 − nḠ2(t)
]
+ n2Ḡ2(t)

[ m∑
i=1

(
F̄

(r)
i (t)

)2 −mF̄ 2(t)
]

and

η3 = mnF̄ 2(t)Ḡ2(t)−
[ m∑
i=1

(
F̄

(r)
i (t)

)2][ n∑
j=1

(
Ḡ

(s)
j (t)

)2]
.

Let ai = F̄
(r)
i (t) (i = 1, . . . ,m) and bj = Ḡ

(s)
j (t) (j = 1, . . . , n) with the corre-

sponding moments µk,a =
∑m

i=1 a
k
i /m and µk,b =

∑n
j=1 b

k
j /n for k = 1, 2. Also,

assume that σ2
a = µ2,a − µ2

1,a and σ2
b = µ2,b − µ2

1,b. Then, we have

η1 = mn[µ1,aσ
2
b + µ1,bσ

2
a],

η2 = mn[mµ2
1,aσ

2
b + nµ2

1,bσ
2
a]

and
η3 = −mn[µ2

1,aσ
2
b + µ2

1,bσ
2
a + σ2

aσ
2
b ].

The proof is complete due to the inequality

η1 + η2 + η3
mn

= µ1,aσ
2
b + µ1,bσ

2
a +mµ2

1,aσ
2
b + nµ2

1,bσ
2
a − µ2

1,aσ
2
b − µ2

1,bσ
2
a − σ2

aσ
2
b

 µ2,aσ
2
b + µ2,bσ

2
a +mµ2

1,aσ
2
b + nµ2

1,bσ
2
a − µ2

1,aσ
2
b − µ2

1,bσ
2
a − σ2

aσ
2
b

= (µ2,a − µ2
1,a)σ

2
b + (µ2,b − µ2

1,b)σ
2
a +mµ2

1,aσ
2
b + nµ2

1,bσ
2
a − σ2

aσ
2
b

= mµ2
1,aσ

2
b + nµ2

1,bσ
2
a + σ2

aσ
2
b  0,

where the inequality follows from the fact that µ1,a  µ2,a and µ1,b  µ2,b. �
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According to the RSS literature, more efficient estimators of the population
mean, distribution function and median are obtained by increasing the number of
stages in MSRSS, given a fixed set size. The next two results verify a similar prop-
erty in estimating θ1(t) and θ2(t).

PROPOSITION 3.6. For fixed m and n, Var(θ̂r,s1 ) is decreasing in r and s.

P r o o f. It suffices to show that Var(θ̂r,s1 ) ¬ Var(θ̂r−1,s1 ) and Var(θ̂r,s1 ) ¬
Var(θ̂r,s−11 ). Using the reasoning from the beginning of the proof for the second
part of Proposition 3.2, one can write

m2n2E(θ̂r,s1 )2 = E
{ m∑

i 6=i′=1

n∑
j 6=j′=1

I(X
(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j′ > t)

(3.14)

+
m∑
i=1

n∑
j 6=j′=1

I(X
(r)
i > Y

(s)
j > t)I(X

(r)
i > Y

(s)
j′ > t)

+
n∑

j=1

m∑
i 6=i′=1

I(X
(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j > t)

+
m∑
i=1

n∑
j=1

I(X
(r)
i > Y

(s)
j > t)

}
.

To prove the result, we need some equalities and inequalities regarding the four
expectation terms on the right-hand side of equation (3.14). Suppose W (r−1)

(i) is the
ith order statistic of an (r − 1)st stage ranked set sample of size m from f . As to
the first term, we have

(3.15) E{I(X(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j′ > t)}

= EE
{
I(X

(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j′ > t)

∣∣Y (s)
j , Y

(s)
j′

}
= E

[
E
{
I(X

(r)
i > Y

(s)
j > t)

∣∣Y (s)
j , Y

(s)
j′

}
E
{
I(X

(r)
i′ > Y

(s)
j′ > t)

∣∣Y (s)
j , Y

(s)
j′

}]
= E

[
E
{
I(W

(r−1)
(i) > Y

(s)
j > t)

∣∣Y (s)
j , Y

(s)
j′

}
× E

{
I(W

(r−1)
(i′) > Y

(s)
j′ > t)

∣∣Y (s)
j , Y

(s)
j′

}]
¬ EE

{
I(W

(r−1)
(i) > Y

(s)
j > t)I(W

(r−1)
(i′) > Y

(s)
j′ > t)

∣∣Y (s)
j , Y

(s)
j′

}
= E{I(W (r−1)

(i) > Y
(s)
j > t)I(W

(r−1)
(i′) > Y

(s)
j′ > t)},

where the inequality holds owing to the positive covariance between any pair of
order statistics in a sample (see Lehmann [7]).
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Similarly, it follows that

(3.16) E{I(X(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j > t)}

= EE
{
I(X

(r)
i > Y

(s)
j > t)I(X

(r)
i′ > Y

(s)
j > t)

∣∣Y (s)
j

}
= E

[
E
{
I(X

(r)
i > Y

(s)
j > t)

∣∣Y (s)
j

}
E
{
I(X

(r)
i′ > Y

(s)
j > t)

∣∣Y (s)
j

}]
= E

[
E
{
I(W

(r−1)
(i) > Y

(s)
j > t)

∣∣Y (s)
j

}
E
{
I(W

(r−1)
(i′) > Y

(s)
j > t)

∣∣Y (s)
j

}]
¬ EE

{
I(W

(r−1)
(i) > Y

(s)
j > t)I(W

(r−1)
(i′) > Y

(s)
j > t)

∣∣Y (s)
j

}
= E{I(W (r−1)

(i) > Y
(s)
j > t)I(W

(r−1)
(i′) > Y

(s)
j > t)}.

Additionally,

(3.17) E{I(X(r)
i > Y

(s)
j > t)I(X

(r)
i > Y

(s)
j′ > t)}

= EE
{
I(X

(r)
i > Y

(s)
j > t)I(X

(r)
i > Y

(s)
j′ > t)

∣∣Y (s)
j , Y

(s)
j′

}
= EE

{
I(W

(r−1)
(i) > Y

(s)
j > t)I(W

(r−1)
(i) > Y

(s)
j′ > t)

∣∣Y (s)
j , Y

(s)
j′

}
= E{I(W (r−1)

(i) > Y
(s)
j > t)I(W

(r−1)
(i) > Y

(s)
j′ > t)}

and

E{I(X(r)
i > Y

(s)
j > t)} = EE

{
I(X

(r)
i > Y

(s)
j > t)

∣∣Y (s)
j

}
(3.18)

= EE
{
I(W

(r−1)
(i) > Y

(s)
j > t)

∣∣Y (s)
j

}
= E{I(W (r−1)

(i) > Y
(s)
j > t)}.

From (3.14)–(3.18) we get

m2n2E(θ̂r,s1 )2 ¬ E
{ m∑

i 6=i′=1

n∑
j 6=j′=1

I(W
(r−1)
(i) > Y

(s)
j > t)I(W

(r−1)
(i′) > Y

(s)
j′ > t)

+
m∑
i=1

n∑
j 6=j′=1

I(W
(r−1)
(i) > Y

(s)
j > t)I(W

(r−1)
(i) > Y

(s)
j′ > t)

+
n∑

j=1

m∑
i 6=i′=1

I(W
(r−1)
(i) > Y

(s)
j > t)I(W

(r−1)
(i′) > Y

(s)
j > t)

+
m∑
i=1

n∑
j=1

I(W
(r−1)
(i) > Y

(s)
j > t)

}
= m2n2E(θ̂r−1,s1 )2.

This and unbiasedness of θ̂r,s1 imply that Var(θ̂r,s1 ) ¬ Var(θ̂r−1,s1 ). A similar argu-
ment proves the second part. �
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We close this section by the analog of Proposition 3.6 for θ̂r,s2 . The proof is
done similarly, and thus it is not detailed.

PROPOSITION 3.7. For fixed m and n, Var(θ̂r,s2 ) is decreasing in r and s.

4. NUMERICAL STUDIES

We carried out a simulation study to examine the performance of the dynamic
reliability estimator. To this end, it was assumed that the distribution functions of X
and Y are related as G(y) = F (y/σ) for some σ > 0. In particular, we considered
the following choices of F :

• The standard uniform distribution with

F (x) = x, 0 < x < 1,
which gives

θ(t) =

{
(σ − t)/

(
2(1− t)

)
if 0 < σ < 1,

(1− t)/
(
2(σ − t)

)
if σ  1,

0 < t < min{1, σ}.
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Figure 1. Estimated REs for F (x) = x, 0 < x < 1, and σ = 0.85.
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• The standard exponential distribution with

F (x) = 1− e−x, x > 0,

which gives
θ(t) =

1

σ + 1
, t > 0.

• The standard normal distribution with

F (x) =
x∫
−∞

1√
2π

e−z
2/2 dz = Φ(x), x ∈ R,

which gives

θ(t) =

[∞∫
t

Φ

(
x

σ

)
1√
2πσ

e−x
2/2 dx− Φ

(
t

σ

)(
1− Φ(t)

)]
×
[(

1− Φ

(
t

σ

))(
1− Φ(t)

)]−1
, t ∈ R.
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Figure 2. Estimated REs for F (x) = 1− e−x, x > 0, and σ = 0.85.
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• The standard logistic distribution with

F (x) =
1

1 + e−x
, x ∈ R,

which gives

θ(t) =

[∞∫
t

1

1 + e−x/σ
e−x

(1 + e−x)2
dx− 1

1 + e−t/σ

(
1− 1

1 + e−t

)]
×
[(

1− 1

1 + e−t/σ

)(
1− 1

1 + e−t

)]−1
, t ∈ R.

Also, sample sizes

(m,n) ∈ {(3, 3), (4, 4), (5, 5)}
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Figure 3. Estimated REs for F (x) = Φ(x), x ∈ R, and σ = 1.25.
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and stage numbers
(r, s) ∈ {(1, 1), (2, 2), (4, 4)}

were selected.
The efficiency of θ̂r,s(t) relative to θ̂(t) was estimated as follows. For each

combination of distributions and sample sizes, 10,000 pairs of samples were gen-
erated in SRS and MSRSS (with the aforesaid stage numbers). The two estimators
were computed from each pair of samples in the corresponding designs, and their
mean squared errors (MSEs) were determined. The relative efficiency (RE) is de-
fined as

RE(t) =
M̂SE

(
θ̂(t)

)
M̂SE

(
θ̂r,s(t)

) .
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Figure 4. Estimated REs for F (x) = 1/(1 + e−x), x ∈ R, and σ = 1.25.
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The RE(t) values larger than one indicate that θ̂r,s(t) is more efficient than
θ̂(t). Figures 1–4 display some of the results for σ = 0.85, 1.25. Full output figures
are available on request from the first author.

It is observed that the SRS estimator is dominated by its MSRSS analog. For
fixed sample sizes, the larger stage numbers, the larger REs. These trends are some-
times violated for a limited range of t values. For example, see Figure 1 in this
respect. It is worth noting that the efficiency gain is relatively high even with small
sample size (m,n) = (3, 3). In general, the RE tends to be decreasing as a function
of t, as seen in most figures.

5. ILLUSTRATION

The MSRSS can be very efficient if the variable of interest is highly correlated
with a concomitant variable. In this case, if the second variable can be measured
with negligible cost, then we may use it in judgment ranking process (see Stokes
[11] for more details). In doing so, in step 2 of the RSS procedure, the elements of
the ith sample are ordered according to the concomitant variable, and then study
variable is actually measured for unit ranked ith smallest. The MSRSS with con-
comitant variable is implemented similarly.

In this section, we illustrate the proposed procedure using a data set collected
at the Australian Institute of Sport. It is made up of thirteen measured variables on
102 male and 100 female athletes.1 We will consider lean body mass (LBM) and
body mass index (BMI) for each athlete. The LBM is a component of body com-
position, calculated by subtracting body fat weight from total body weight. Exact
measurement of the LBM is done using various technologies such as dual energy
X-ray absorptiometry (DEXA) which is costly. On the other hand, the BMI is a
well-accepted measure of obesity which is easy to calculate and readily accessible.
A BMI value is simply weight (in kg) divided by square of height (in m). The cor-
relation coefficient between the two variables is 0.71. So, the BMI can serve as a
concomitant variable.

Let X and Y be the LBM variables for the male and female populations, re-
spectively. It is of interest to estimate θ(t) = P (Xt > Yt), as defined in Section 2.
The threshold t may be interpreted as a lower bound on the LBM values, which
is easily available from previous studies or experts’ opinions. For (m,n) = (4, 4),
100,000 samples were drawn from the two hypothetical populations based on SRS
and MSRSS designs, where (r, s) ∈ {(1, 1), (2, 2), (3, 3)}. The sampling is done
with replacement to ensure that the measured units are independent of each other.
From each sample, the appropriate estimator (θ̂(t) or θ̂r,s(t)) was computed, and its
MSE was determined. Finally, RE(t) was evaluated as stated in the previous sec-
tion. The results are depicted in Figure 5. As expected, the REs always exceed the

1The data set can be found at http://www.statsci.org/data/oz/ais.html
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unity, and higher precision is achieved by increasing the number of stages. These
are consistent with our theoretical results and simulation studies.
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Figure 5. Estimated RE as a function of t for the sport data set.

6. CONCLUSION

The problem of estimating the reliability parameter θ, when X and Y are in-
dependent random variables, has received considerable attention. This index has
been recently extended to a dynamic form θ(t). This article concerns estimation
of the latter measure based on MSRSS. A nonparametric estimator is developed,
and its optimal properties are studied. Results of simulation studies reveal that the
proposed estimator often outperforms its SRS analog. Also, the estimator becomes
more efficient by increasing the stage numbers. A real data set is utilized to illus-
trate application of the proposed index.

Acknowledgments. The authors are thankful to the referees for careful read-
ing of the paper and insightful comments.

REFERENCES

[1] M. F. Al-Saleh and M. A. Al-Kadir i, Double-ranked set sampling, Statist. Probab. Lett.
48 (2) (2000), pp. 205–212.



18 M. Mahdizadeh and E. Zamanzade

[2] M. F. Al-Saleh and A. I . Al-Omari, Multistage ranked set sampling, J. Statist. Plann.
Inference 102 (2) (2002), pp. 273–286.

[3] M. F. Al-Saleh and M. H. Samuh, On multistage ranked set sampling for distribution
and median estimation, Comput. Statist. Data Anal. 52 (4) (2008), pp. 2066–2078.

[4] Z. M. Birnbaum, On a use of the Mann–Whitney statistic, in: Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to
the Theory of Statistics, J. Neyman (Ed.), University of California Press, Berkeley 1956, pp.
13–17.

[5] Z. Chen, Ranked set sampling: Its essence and some new applications, Environ. Ecol. Stat.
14 (4) (2007), pp. 355–363.

[6] S. Kotz, Y. Lumelski i , and M. Pensky, The Stress-Strength Model and Its Generaliza-
tions: Theory and Applications, World Scientific, River Edge, NJ, 2003.

[7] E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), pp. 1137–
1153.

[8] M. Mahdizadeh and E. Zamanzade, A new reliability measure in ranked set sampling,
Statist. Papers 59 (3) (2018), pp. 861–891.

[9] G. A. McIntyre, A method for unbiased selective sampling using ranked sets, Aust. J. Agric.
Res. 3 (1952), pp. 385–390.

[10] S. Sengupta and S. Mukhuti, Unbiased estimation of P (X > Y ) using ranked set sample
data, Statistics 42 (3) (2008), pp. 223–230.

[11] S. L. Stokes, Ranked set sampling with concomitant variables, Comm. Statist. Theory Meth-
ods 6 (1977), pp. 1207–1211.

[12] K. Takahasi and K. Wakimoto, On unbiased estimates of the population mean based on
the sampling stratified by means of ordering, Ann. Inst. Statist. Math. 20 (1968), pp. 1–31.

[13] D. A. Wolfe, Ranked set sampling: An approach to more efficient data collection, Statist.
Sci. 19 (4) (2004), pp. 636–643.

[14] V. Zardasht and M. Asadi, Evaluation of P (Xt > Yt) when both Xt and Yt are residual
lifetimes of two systems, Stat. Neerl. 64 (4) (2010), pp. 460–481.

M. Mahdizadeh
Department of Statistics
Hakim Sabzevari University
P.O. Box 397, Sabzevar, Iran
E-mail: mahdizadeh.m@live.com

Ehsan Zamanzade
Department of Statistics

University of Isfahan
P.O. Box 81746-73441, Isfahan, Iran

E-mail: e.zamanzade@sci.ui.ac.ir;
ehsanzamanzadeh@yahoo.com

Received on 14.7.2016;
revised version on 31.5.2017


	1 Introduction
	2 Reliability estimation
	3 Theoretical properties
	4 Numerical studies
	5 Illustration
	6 Conclusion
	References

