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CONVERGENCE RATES IN TEE STRONG LAW 
OF LARGE NUMBERS FOB SUMS OF RANDOM VARIABLES 

WITH rWvLTlDI~NSlONAL ]INDICES 

Abstract. We consider a set of independent random variabls 
indexed by 2 (d 3 I) ,  the positive integer d-dimensional lattice 
points, and study the convergence rates in the strong law of large 
numbers. The results presented provide us with much deeper under- 
standing of the tail probability of distributions. 

uctioa Let 2, d 2 1, be the positive integer d-dimensional 
lattice points with coordinatewise partial ordering <. Points in Zd are 
denoted by m, n etc. Also, for n = (nl, n,, . . ., n,), we define 

d 

and n -. oc, is to be interpreted as In1 -, oo. 
Let {X,, n € Z d )  be a set of independent random variables with EX, = 0 

and E X :  =a: < oo, n€zd. Let 

S, = C X,, B: = af = E ( ~ 3 .  
hds Ldn 

It has been shown by Smythe [12j that if [X,, neZdj are independent 
and identically distributed (iid.) random variables, then the strong law of 
large numbers holds if and only if EjX,l(Iog+ JX,J)"-' < m, where log, x 
= max ( I ,  In x). Moreover, Cut  [7, 81 has recently proved the following 

THEOREM 1 [7, 83. k t  (X,, n~ Zd]  be i.i.d. random variables, let r 2 1/z 
and or > 1/2. The following statements are equivalent: 
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(2) In/"-' P(IS,I 2 (nfa t) < a for all t > 0. 
m 

(3) 1 Inlar-2 P(max lS,j 2 lala r) < oo for t > 0 .  
n k S R  

I f  a = 1/2, rhen the jiillo~~ing are equivalent: 

(4) ~ X : ( l o g ,  lX,l)d-l < ca and EX, = 0. 

Let h be a finite and positive function defined on LO, a). Furthermore, 
let, for every t > 0, f ,  be an increasing and positive function. Let us put 

where @ denotes the standard normal distribution function. This paper deals 
with order of magnitude of A,(h,j;)  and F ( h , f , )  as t - 0' in the case 
[X,, rs E Zd) are independent but necessarily identically distributed. By spe- 
cializing the functions h and J;, putting, for example, h(ln1) = Inl(r(log+ lnl)P, 
J; (In\) = t lnlY (log+ In/)< u,  B, y ,  6 E (  - m, + m), we will deduce generalization 
of some results obtained by Gut 17, 81, Klesov 19) and Lagodowski and 
Rychlik [lo]. Our results provide us with a much better and deeper 
understanding of the tail probability of distributions. From the results 
presented we also get extensions, for d 2 2, of some theorems given by Chen 
[2, 31 and Csorgo and Rychlik 141. 

2. General theorem. Let us define d(x) = Card ;n€Zd: In1 = [XI] and 
M,(x)  = Card { R E Z ~ :  )I) < [XI) = M(x), where [x] denotes the greatest 
integer not exceeding x, XE[O, CQ). We have (cf. [13]) 

SO that, as x - +  m, 

(7) M(x) = O(x(log+ x)~-'). 

Furthermore, for every 6 7 O? d {x) = o (xg) as x -, oo . 
THEOREM 2. Let (X,, n€Zd) be independent random variables such that 

EX, = 0, EX: = IS: < m, nEZd. If  there exists a junction g such that 

(8) g(x) is nondecreasing on the interval (0, m), is even on ( -coy m), and 
g(x)-t oo as x-+ m,  
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' (9) the function x/g(x) does nor decrease on (0, a), 
(10) for every t > 0 

where 

then there exists a positive constant (independent of the functions h,J; and g )  
such thac 

where c~ - CQ is to be interpreted as 0. 
ProoF. Let us observe that, by (lo), F(h,J;) < co if and- only if 

A ,  (h, A) < co . Thus suppose F (h, A) < oo . We have I 
(12) ~ ~ , ( h , f i - ~ ( h , j ; ~ ~  z ~(I~I)JP(IS.IZB.X(I~I))-~@(-/;(I~I)N. 

ma 1 

Let 
A, (x) = I P (S, < xB,) - @ (x)l. 

In view of Bikyalis result (cf. [I] or [Il l)  we can prove that under our 
assumptions 

(13) A, (4 G Co bn@)/(1+ 1x1I2 s ((1 + 1x1) Bn)? 

where Co is an absolute constant. Combining (12) and (13) with x =J; (lnl), 
we see that 

which proves (11). 
Now let us observe that 

Thus if, For example, h (x) = x' (log+ x)", (x) = txn, u > 0, where log, x 
= max (0, In x), then 
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where N denotes a standard normal random variable. But, taking into 
account Abel's transform and (61, we get 

as n -t m, provided s = 0, 1 ,  2, . . . , and r # - 1, so that 

oa 
2 ( ~ / ~ y + d -  1 (2/n)1/2 j p- I)/* (log + (x/t)P'" ' exp ( - x2/2) dx 

t 

On the other hand, in case of h (.XI = x - ' (log + xy, f ;  (x) = t (log + x)", 
u > 0, we have 

and 
n 

(16) C k - ' d ( k ) l o g ' , k ~ ( l o g + n ) " + ~ / ( s + d ) ( d - I ) !  a s n - c o .  
k =  1 

Thus, in this case, we get 

m 
(2 -1/2 S l X ~ ( ~ f d ) / u  E n) exp ( - x2/2) dx 

- X 

- - E I N((8 + dl/" = 
Cu/(s+d)  as t + O + -  

Note that C, = 2ltZa r ( 1 / 2  + 11201). 
By applying Theorem 2 and (17) we have 

(18) lim t("+ d"" C In/-l(log+ Id)" P(1S,( 2 tB,(log+ Inl)") 
1 +o+ e2 1 
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provided 

But (19) holds in case of (s+d)lu > 2 and 

Thus (18) gives extension of (5) not only to the case of nonidentically 
distributed random variables, but (18) also gives the order of magnitude of 
A , ( h , J )  as t +0', for h(x)  = x-l(iog+ x)", f ; ( x )  = t(log+ x)", u > 0. 

Furthermore, taking into account (IS) and Theorem 2, we get 

(20) lim { rw ' l ) l a  ]nlr(logi InlY P(ls,l 
r -o+ ma I 

s+d- l 

41 

(2/,#12 ( l / p l ) ~ + d -  1 j $r+ UP (log, exp( - x2/2) d x  
- - 0 

(~+ l ) (d - I ) !  

x Pi) ((r + 1)/2a + 3/2)/(r + 1) (d - I)!, 

where TZ"(x), i = 1, 2, ..., denotes the i - th  derivative of the function T ( x ) ,  
and T(")(x) is to be interpreted as T ( x ) ;  Di, 1 < i 6 s + d  - 2, are some 
constants which depend on d, u,  r, and s, and 

Of course (20) holds in case of r 2 2a- 1 and 

Note that (20) gives generalization of (2). At the same time we would 
like to mention that in order to get (20) or (18) we need some moment 
restrictions which imply (19) and (2f), respectively. Let us observe that if 
(X,, n E Zd are independent and identically distributed random variables 
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with EX, = 0, EX: = 1, we get b,(g) = E X ;  g (X,) and g (B,) = g (ln1)'f2, so 
in the case s = 1, u = 1/2, (19) requires 

C lei - l/s (lfil)1'2 < 
el, 1 

which, in consequence, implies a little bit stronger assumption than (4). This 
fact is obvious because we get (18) from general Theorem 2. The exact order 
of magnitude of (2) and IS), as t + O + ,  is presented in the next section. 

3. Cornvergeme rates in the strong law of large numkw. At first we state 
and prove the following 

LEMMA. . k t  X,, n E zd] be independent and normally distributed random 
variables such that EX, = 0, EX: = a: c: a, ~ F Z * .  Then, fbr every or > Q, 

(22) lim (ln(L/t))-"-d C lnl -I (log+ ImlY P(lS,f 2 tB, In17 
t+0+ r 3  1 

(23) lim t"+ lJ/'(ln (l/t))l-'-d (nlr (log+ In1)' P (IS,( 2 tBm Inla) 
f +o+ st8 1 

l / d - l ( r + l ) - l ( ( d - l ) ! - l c ( + , ,  P, s = 0, 1 ,  2, -.., 
and, .for every u = 1, 2, . . . , 

Proof. We note that (23) and (24) follow from (20) and (181, respective- 
ly. To see (22) we use the following asymptotic expansions: 

m 

e (In (l/t))-s-d (log, n)"' P ( t  (n - 1)" d (.N( < tna)/(s + d) (d - I)! 
n= l 

a, 

( 2 / ~ ) " ~  (l/a)S+* (In (l/t))-s-d J (log. ( ~ / t ) y + ~  exp( - x2/2) d x  
'C - 0 

( ~ + d ) ( d  - I)! 
=l/as'd(s+d)(d-l)! as t+Of .  
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Thus Lemma is proved. 

THEOREM 3. Let {X,, p r ~ Z ~ )  be independent random variables such that 
EX,=O, ~ X : = c i i < m ,  ~ E Z ~ ,  and d,=supA,(x)-0 as n + m ,  

x 

then (22) holds. 

If 
(26) lim limsup r(" lM" (In(l/t))' - s - d  

K - r o i  *+o+ 
C tnl'(log, fnl)" x 

la1 =-Kt -  ]Iu 

x P(IXkl 3 t B, Inla) = 0, 
1 Skdn 

then (23) holds. 
If 

(27) lim lirns~pt'"+"'~" Inl-'(1og+lnl)" P(lxkI 
K + w  1+0+ 1 C k < n  

2 tB,(log+ Inl)") = 0, 

where ck = ( n  €Zd: In1 > exp(K t -  '/3)-, then (24) holds. 
Proof. At first we prove (23). By. Lemma, it suffices to show that 

(28) lim t('+ 'lta (In (l/t))' -"-" Idr(log+ Inly x 
t+o+ rrs 1 

x IP(IS,( 2 t B, Inla)- 2@(-t ]nla)l = 0. 

Now we prove (28) in the following two steps. 

S t ep  1. Let n,(t) be such a positive integer that no (r) + I: as t -r 0' 
and 

t('+"fa(log+ n,(t)P+d-' (na(t)).+l/(ln(l/t)p'd-l -+ 0 as t + 0'. 

For every positive number K define 
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Then, by (14), 

,< lirn ( max ~ & ) t ( ~ +  l~P(ln(l/t))l-s-d x 
r -0 + ~ E B , K  - -4, 

Step 2. By the result of Fuk [6]  (Corollary 3 with r = 2, y, = . .. = y, 
= atB,lnta/2, where a is a positive constant such that a < &/(I+ I)), we get 

Let us observe that by Abefs transform 

w 

- - lim tirnr('+ ')/a- 2/a (ln(l/t))' -s-J(2a/n-r) 1 ~ - ~ " ' " ( b g +  ~)"'~-'dx/(d- l)! 
K - + w l - + O  , - l / a ~  

- - 1 
lirn lim (2a/a - r) f r  + 'va - 2Ju x 

(d- ~)!(&/U-P- 1) g+,t-ro 

(ln(l/t))' - 8 - d  -(r+ 1 ) / ~ + 2 / 1 1 ~ 1 -  2m/r(+ I (log + (l/t)"" KYfd - ' . 
On the other hand, 

x ' / " e x p ( - - y ~ ) < ( a y e ) - ' ~ ~ ,  a ,y .x>O,  

so that 

(32) exp ( - t 11) "/8e2) < t - 'la In1 - Ma (8e/u)'JU. 

Thus, similarly as in (31), we get 

(33) lim lirn sup P' ')'" (In (l/t))l-s-d [rrl' (log + lav x 
K+Q r + O +  ~ E B F R  

x exp( - tZ rnl2"/8e2) = 0. 

Now let us observe that, by Lemma 2 ( [ 5 ] ,  p. 166), 
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Thus if K is sufficiently large, then, for every neKK, 

@(-tInJaf < ( 2 ~ ~ ) - ' ~ ~ t - '  1.1-"exp(-rZ(nlzu/2). 

Hence, taking into account inequality (321, we get 

@ ( - t 1.1") < (Zrr)- 112 (ae/2)- 'I" t- 1 - 21" 14 -. ""I - a I 

so that 

(34) lim lim sup rt'+ ')la (ln(l/t))' -'-" ~nlr(1og, In()" @(- t lal") 
K - a  ,-LO+ 4~ 

Now (28) follows from (29), (301, (31), (33), (34) and (26). 
The proofs of (22) and (24) can be get by some modifications of the 

proof of (23). Namely, in the proof of (24) we use the set CFK instead of the 
set BFK and apply AbePs transform as well as Fuk's inequality with the 
functions from (22) and (241, respectively. Thus the details are omitted. 

Let us observe that if, for example, ( X , ,  n € Z d )  are independent and 
identically distributed random variables such that EX, = 0, EX;  = 1, then 

and 

< ]im lim sup(2/(1 + 2r3)rcd- 1 t"+'-2a)1"(1+ 2"' x 
K-rm t-0 

x E I ( I X ~ ( ~ ( ~ +  1) / (1+2~)  (log, ((Xll/r)P+d- I((x,( > t - 1 1 2 a ~ 1 J 2 +  7;, 

so that if (r + 1)/2 > or > 0 and 

then (26) holds. Furthermore, it is not difficult to show that if X,, rr€zd, are 
independent and identically distributed such that EX, = 0, EX:  = 1 and 
E X :  logy" 1 - 2" (X,1 < a , s + d > 2u, then (27) also holds. Similarly, one can 
check that if 

lim lim sup(In (l/t))-s-d t-'/(' ik) E ( x ~ ( ~ / ( ~  x 
K - m  t+O 

x(log+ I x , ~ ) " ' ~ - ~  i(IX,I > r-'/2aK1/2+u ) = 0, 
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then (25) also holds. Thus Theorem 3 and the remarks given above not only 
give some assertions obtained in [2 )  - 141 and [73 - [IO], but extend them to 
ilonidentically distributed random variables and provide us with a much 
better and deeper understanding of the tail probability of distributions. 
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