PROBABILITY

AND
MATHEMATICAL STATISTICS
Vol. 7, Fase. 2 (1986), p. 125-147

ON A RANDOM VERSION OF THE ANSCOMBE CONDITION AND ITS APPLICATIONS

AY
KRZYSZTOF S. KUBACKI AND DOMINIK SZYNAL (LUBLIN)

Abstract. The paper proves theorems of [6] which are given here in a more general form. Moreover, some applications of the introduced version of the Anscombe condition are discussed.

1. Introduction. Let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of random variables (r.vs.) defined on a probability space (Ω, \mathscr{F}, P). Suppose that there exists a probability measure μ such that

$$
\begin{equation*}
Y_{n} \Rightarrow \mu, \quad n \rightarrow \infty \text { (converges weakly); } \tag{1}
\end{equation*}
$$

for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} P\left[\max _{|i-n| \leqslant \delta n}\left|Y_{i}-Y_{n}\right| \geqslant \varepsilon\right] \leqslant \varepsilon . \tag{A}
\end{equation*}
$$

Suppose that $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer - valued r.vs. defined on the same probability space (Ω, \mathscr{F}, P). The well known Anscombe's theorem [2] proves that if a sequence $\left\{Y_{n}, n \geqslant 1\right\}$ of r.vs. satisfies conditions (1) and (A), then

$$
\begin{equation*}
Y_{N_{n}} \Rightarrow \mu, \quad n \rightarrow \infty, \tag{2}
\end{equation*}
$$

for every sequence $\left\{N_{n}, n \geqslant 1\right\}$ of positive integer - valued r.vs. satisfying

$$
\begin{equation*}
N_{n} / a_{n} \xrightarrow{P} 1, \quad n \rightarrow \infty \text { (in probability) } \tag{3}
\end{equation*}
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.
Condition (A), called the Anscombe condition, plays very important role in proofs of limit theorems for sequences of r.vs. with random indices. Aldous [1] has pointed out that condition (A) is a necessary and sufficient one for (2) when (3) holds. A more general and stronger result than that of [2] and [1] has been given by Csörgö and Rychlik [4].

Theorem 1 [4]. Let $\left\{k_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive numbers. The following conditions are equivalent:
(i) the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies (1) and the so-called "generalized Anscombe condition" with norming sequence $\left\{k_{n}, n \geqslant 1\right\}$: for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\limsup _{n \rightarrow \infty} P\left[\max _{\left|k_{i}^{2}-k_{n}^{2}\right| \leqslant \delta k_{n}^{2}}\left|Y_{i}-Y_{n}\right| \geqslant \varepsilon\right] \leqslant \varepsilon ;
$$

(ii) $Y_{N_{n}} \Rightarrow \mu(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying

$$
\begin{equation*}
k_{N_{n}}^{2} / k_{a_{n}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty) \tag{4}
\end{equation*}
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.
These results essentially base on the assumption $Y_{n} \Rightarrow \mu(n \rightarrow \infty)$. In [6] we have considered the case where that fact is not known but we want to know whether a sequence of r.vs. with random indices weakly converges to a measure (we are interested in, e.g., Gaussian measure). The following theorem has been given without proof:

Theorem 2 [6]. Let $\left\{k_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive numbers and let $\left\{v_{n}, n \geqslant 1\right\}$ be a sequence of positive integer-valued r.vs. such that $\nu_{n} \xrightarrow{P} \infty(n \rightarrow \infty)$. The following conditions are equivalent:
(i) $Y_{v_{n}} \Rightarrow \mu(n \rightarrow \infty)$, and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies the so-called "Anscombe random condition" with norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$: for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup } P\left[\max _{\mid k_{i}^{2}-k_{v_{n}^{2}}^{2} \leqslant \delta k_{v_{n}}^{2}}\left|Y_{i}-Y_{v_{n}}\right| \geqslant \varepsilon\right] \leqslant \varepsilon ; \tag{*}
\end{equation*}
$$

(ii) $Y_{N_{n}} \Rightarrow \mu(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying

$$
\begin{equation*}
k_{N_{n}}^{2} / k_{v_{a_{n}}^{2}}^{P} 1 \quad(n \rightarrow \infty), \tag{5}
\end{equation*}
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.
We prove here Theorem 2 in a more general version and discuss some applications of the introduced random version of the Anscombe condition.
2. Random version of the Anscombe condition. Let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of r.vs. defined on a probability space (Ω, \mathscr{F}, P) and let $\left\{\alpha_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive r.vs. ($0<\alpha_{n} \leqslant \alpha_{n+1}$ a.s., $n \geqslant 1$) defined on the same probability space (Ω, \mathscr{F}, P). Furthermore, let $\left\{\tau_{n}, n \geqslant 1\right\}$ be a sequence of positive integer-valued r.vs. defined on (Ω, \mathscr{F}, P) and such that $\tau_{n} \xrightarrow{P} \infty(n \rightarrow \infty)$.

Definition (Anscombe random condition). A sequence $\left\{Y_{n}, n \geqslant 1\right\}$ is said to satisfy the Anscombe random condition with the norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ of positive r.ss. and filtering sequence $\left\{\tau_{n}, n \geqslant 1\right\}$ of positive
integer-valued r.vs. if for every $\varepsilon>0$ there exists a $\delta>0$ such that
($\mathrm{A}^{* *}$)

$$
\limsup _{n \rightarrow \infty} P\left[\max _{\left|\alpha_{i}^{2}-\alpha_{v_{n}}^{2}\right| \leqslant \delta \alpha_{v_{n}}^{2}}\left|Y_{i}-Y_{v_{n}}\right| \geqslant \varepsilon\right] \leqslant \varepsilon .
$$

One can easily see that in the special case, when $\alpha_{n}=k_{n}$ a.s., $\tau_{n}=n$ a.s., $n \geqslant 1$, ($\mathrm{A}^{* *}$) reduces to (A°), and hence, when $k_{n}^{2}=n(n \geqslant 1)$, ($\mathrm{A}^{* *}$) reduces to (A). On the other hand, if $\alpha_{n}=k_{n}$ a.s. $(n \geqslant 1)$, then ($\left.\mathrm{A}^{* *}\right)$ reduces to (A^{*}).

Moreover, we notice that if a sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies (A), then it satisfies $\left(\mathrm{A}^{* *}\right)$ with the norming sequence $\{\sqrt{n}, n \geqslant 1\}$ (i.e. $\alpha_{n}=\sqrt{n}$ a.s., n $\geqslant 1$) and any filtering sequence $\left\{a_{n}, n \geqslant 1\right\}$ of positive integers such that a_{n} $\rightarrow \infty \quad(n \rightarrow \infty)$.

The analogous remark refers to (A°). Namely, if a sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies (A°) with norming sequence $\left\{k_{n}, n \geqslant 1\right\}$, then it satisfies $\left(\mathrm{A}^{* *}\right)$ with the same norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ (i.e. $\alpha_{n}=k_{n}$ a.s.,. $n \geqslant 1$) and any filtering sequence $\left\{a_{n}, n \geqslant 1\right.$ \} of positive integers such that $a_{n} \rightarrow \infty(n \rightarrow \infty)$.

The following lemma generalizes these remarks and proves Lemma 1 from [6]:

Lemma 1. If a sequence $\left\{Y_{n}, n \geqslant 1\right\}$ of r.vs. satisfies $\left(\mathrm{A}^{\circ}\right)$ with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$, then it satisfies $\left(\mathrm{A}^{* *}\right)$ with the same norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and any filtering sequence $\left\{\tau_{n}, n \geqslant 1\right\}$ independent of $\left\{Y_{n}, n \geqslant 1\right\}$.

Proof. Let $K \in N$ be fixed. Then

$$
\begin{aligned}
P\left[\max _{\left|k_{i}^{2}-k_{\tau_{n}}^{2}\right| \leqslant \delta \tau_{\tau_{n}}^{2}}\left|Y_{i}-Y_{\tau_{n}}\right| \geqslant \varepsilon\right] & \leqslant P\left[\tau_{n} \leqslant K\right]+ \\
& +\sum_{r=K+1}^{\infty} P\left[\tau_{n}=r\right] P\left[\max _{\left|k_{i}^{2}-k_{r}^{2}\right| \leqslant \delta k_{r}^{2}}\left|Y_{i}-Y_{r}\right| \geqslant \varepsilon\right]
\end{aligned}
$$

as τ_{n} is for every $n \geqslant 1$ independent of $\left\{Y_{n}, n \geqslant 1\right\}$. But

$$
\lim _{n \rightarrow \infty} P\left[\tau_{n} \leqslant K\right]=0,
$$

since $\tau_{n} \xrightarrow{P} \infty(n \rightarrow \infty)$. Choosing then K so large that

$$
P\left[\max _{\left|k_{i}^{2}-k_{r}^{2}\right| \leqslant \delta k_{r}^{2}}\left|Y_{i}-Y_{r}\right| \geqslant \varepsilon\right] \leqslant \varepsilon \quad \text { for every } r>K,
$$

we obtain the desired result.
There arises, obviously, a question about conditions which the filtering sequence $\left\{\tau_{n}, n \geqslant 1\right\}$ should satisfy in the case where we reject in Lemma 1 the assumption that $\left\{\tau_{n}, n \geqslant 1\right\}$ is independent of $\left\{Y_{n}, n \geqslant 1\right\}$. The following lemma gives an answer to this question and proves Lemma 2 from [6]:

Lemma 2. If a sequence $\left\{Y_{n}, n \geqslant 1\right\}$ of r.vs. satisfies $\left(\mathrm{A}^{\circ}\right)$ with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$, then it satisfies $\left(\mathrm{A}^{* *}\right)$ with the same norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and any filtering sequence $\left\{N_{n}, n \geqslant 1\right\}$ satisfying (4).

Proof. By the assumption and the remark after Definition we conclude that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and any filtering sequence $\left\{a_{n}, n \geqslant 1\right\}$ of positive integers such that $a_{n} \rightarrow \infty(n \rightarrow \infty)$. Let $\left\{N_{n}, n \geqslant 1\right\}$ be a sequence of positive integer valued r.vs. satisfying (4), i.e.

$$
\begin{equation*}
k_{N_{n}}^{2} / k_{b_{n}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty) \tag{a}
\end{equation*}
$$

where $\left\{b_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $b_{n} \rightarrow \infty(n \rightarrow \infty)$. Put

$$
B_{n}=\left[\left|k_{N_{n}}^{2}-k_{b_{n}}^{2}\right| \leqslant \eta k_{b_{n}}^{2}\right] \quad(n \geqslant 1),
$$

where η is a fixed positive number. Then for every $\varepsilon>0$ and $\delta>0$ we have
(b)

$$
\begin{aligned}
& P\left[\max _{\left|k_{i}^{2}-k_{N_{n}}^{2}\right| \leqslant \delta k_{N_{n}}^{2}}\left|Y_{i}-Y_{N_{n}}\right| \geqslant \varepsilon\right] \leqslant P\left(B_{n}^{c}\right)+ \\
& \quad \quad+P\left[\max _{\left|k_{i}^{2}-k_{N_{n}}^{2}\right| \leqslant \delta N_{N_{n}}^{2}}\left|Y_{i}-Y_{b_{n}}\right| \geqslant \varepsilon / 2 ; B_{n}\right]+P\left[\left|Y_{N_{n}}-Y_{b_{n}}\right| \geqslant \varepsilon / 2 ; B_{n}\right] \\
& \leqslant \\
& \leqslant P\left(B_{n}^{C}\right)+P\left[\max _{\left|k_{i}^{2}-k_{b_{n}}^{2}\right| \leqslant \delta^{*} k_{b_{n}}^{2}}\left|Y_{i}-Y_{b_{n}}\right| \geqslant \varepsilon / 2\right]+P\left[\max _{\left|k_{i}^{2}-k_{b_{n}}^{2}\right| \leqslant \eta k_{b_{n}}^{2}}\left|Y_{i}-Y_{b_{n}}\right| \geqslant \varepsilon / 2\right],
\end{aligned}
$$

where $\delta^{*}=\delta(1+\eta)+\eta$. Since the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies condition ($\mathrm{A}^{* *}$) with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{b_{n}, n \geqslant 1\right\}$ and since, by (a), $P\left(B_{n}^{c}\right) \rightarrow 0$ as $n \rightarrow \infty$, inequality (b) proves that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{N_{n}, n \geqslant 1\right\}$. The proof of Lemma 2 is completed.

Remark 1. Further it will be shown that (4) is in a sense necessary for $\left(A^{\circ}\right)$ to imply ($A^{* *}$). It will be proved that it is not enough to assume (5).

The following lemma generalizes Lemma 2 as well as Lemma 3 of [6]:
Lemma 3. If a sequence $\left\{Y_{n}, n \geqslant 1\right\}$ of r.vs. satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{\tau_{n}, n \geqslant 1\right\}$, then it satisfies (A**) with the same norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ and any filtering sequence $\left\{N_{n}, n \geqslant 1\right\}$ such that $\alpha_{N_{n}}^{2} / \alpha_{\tau_{a_{n}}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.

Proof. Let us put

$$
B_{n}=\left[\left|\alpha_{N_{n}}^{2}-\alpha_{\tau_{a_{n}}}^{2}\right| \leqslant \eta \alpha_{\tau_{a_{n}}}^{2}\right] \quad(n \geqslant 1),
$$

where η is a fixed positive number. Then, for every $\varepsilon>0$ and $\delta>0$, we have

$$
\begin{aligned}
& P\left[\max _{\left|\left.\right|_{i} ^{2}-a_{N_{n}}^{2}\right| \leqslant \delta a_{N_{n}}^{2}}\left|Y_{i}-Y_{N_{n}}\right| \geqslant \varepsilon\right] \\
\leqslant & \left.P\left(B_{n}^{c}\right)+P P_{\left|\alpha_{i}^{2}-\alpha_{\tau_{a_{n}}}^{2}\right| \leqslant \delta^{* * \alpha_{\tau_{a_{n}}}^{2}}}\left|Y_{i}-Y_{\tau_{a_{n}}}\right| \geqslant \varepsilon / 2\right]+P\left[\max _{\left|\alpha_{i}^{2}-\alpha_{\tau_{a_{n}}}^{2}\right| \leqslant \eta \alpha_{\tau_{a_{n}}}^{2}}\left|Y_{i}-Y_{\tau_{a_{n}}}\right| \geqslant \varepsilon / 2\right],
\end{aligned}
$$

where $\delta^{*}=\delta(1+\eta)+\eta$. The assumption and this inequality imply the desired result.

It is easy to see that if $\alpha_{n}=k_{n}$ a.s. $(n \geqslant 1)$, then Lemma 3 reduces to Lemma 3 of [6].
3. The main theorem. The following theorem generalizes and strengthens the statements of Theorem 1 and Theorem 2:

Theorem 3. Let $\left\{\alpha_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive r.vs. and let $\left\{v_{n}, n \geqslant 1\right\}$ be a sequence of positive integer-valued r.vs. such that $v_{n} \xrightarrow{P} \infty(n \rightarrow \infty)$. The following conditions are equivalent:
(i) $Y_{v_{n}} \Rightarrow \mu(n \rightarrow \infty)$, and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies Anscombe random condition ($\mathrm{A}^{* *}$) with norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$;
(ii) $Y_{N_{n}} \Rightarrow \mu(n \rightarrow \infty)$ for every sequence $\left\{N_{n}, n \geqslant 1\right\}$ of positive integer valued r.vs. such that

$$
\begin{equation*}
\alpha_{N_{n}}^{2} / \alpha_{v_{a_{n}}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty) \tag{6}
\end{equation*}
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.
Proof. Let $\varepsilon>0$ and a closed set $A \subset \boldsymbol{R}$ be given. Then, for every $\delta>0$, we have

$$
\begin{aligned}
& P\left[Y_{N_{n}} \in A\right] \leqslant P\left[Y_{v_{a_{n}}} \in A^{\varepsilon}\right]+P\left[Y_{N_{n}} \in A ; Y_{v_{a_{n}}} \notin A^{\varepsilon}\right] \\
& \leqslant P\left[Y_{v_{a_{n}}} \in A^{\varepsilon}\right]+P\left[\left|Y_{N_{n}}-Y_{v_{a_{n}}}\right| \geqslant \varepsilon\right] \\
& \leqslant P\left[Y_{v_{a_{n}}} \in A^{\varepsilon}\right]+P\left[\left|\alpha_{N_{n}}^{2}-\alpha_{v_{a_{n}}}^{2}\right|>\delta \alpha_{v_{a_{n}}}^{2}\right]+P\left[\max _{\left|\alpha_{i}^{2}-\alpha_{v_{a_{n}}}^{2}\right| \leqslant \delta a_{v_{a_{n}}}^{2}}\left|Y_{i}-Y_{v_{a_{n}}}\right| \geqslant \varepsilon\right],
\end{aligned}
$$

where $A^{\varepsilon}=\{x \in \mathbb{R}: \varrho(x, A) \leqslant \varepsilon\}, \varrho(x, A)=\inf \{|x-y|: y \in A\}$. Since $\varepsilon>0$ can be chosen arbitrarily small, we see by (6), (A**), the assumption $Y_{v_{n}} \Rightarrow \mu$ ($n \rightarrow \infty$) and Theorem 2.1 of [3] that (i) implies (ii).

If (ii) holds, then putting $N_{n}=v_{n}$ a.s. ($n \geqslant 1$), we conclude that $Y_{v_{n}} \Rightarrow \mu$ $(n \rightarrow \infty)$. Suppose that ($\mathrm{A}^{* *}$) with the norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$ fails: Then there exist an $\varepsilon>0$ and a subsequence $n_{1}<n_{2}<\ldots$ of positive integers ($n_{j} \rightarrow \infty, j \rightarrow \infty$) such that
(a)

$$
P\left[\max _{i \in B_{n_{j}}}\left|Y_{i}-Y_{v_{n_{j}}}\right| \geqslant \varepsilon\right]>\varepsilon \quad \text { for all } j \geqslant 1,
$$

where

$$
B_{n_{j}}=\left\{i \in N: \alpha_{v_{n_{j}}}^{2} \leqslant \alpha_{i}^{2} \leqslant(1+1 / j) \alpha_{v_{n_{j}}}^{2}\right\} \cdots(j \geqslant 1)
$$

or

$$
B_{n_{j}}=\left\{i \in N:(1-1 / j) \alpha_{v_{n_{j}}}^{2} \leqslant \alpha_{i}^{2} \leqslant \alpha_{v_{n_{j}}}^{2}\right\} \quad(j \geqslant 1)
$$

We shall only consider the first case as the second one can be treated similarly.

Let $\left\{G_{i}, 1 \leqslant i \leqslant M\right\}$ be disjoint and open subsets such that

$$
0<\mu\left(G_{i}\right)=\mu\left(\bar{G}_{i}\right), \quad \mu\left(\bigcup_{i=1}^{M} G_{i}\right)>1-\varepsilon / 2,
$$

and the diameter $G_{i}<\varepsilon / 2$. Thus, by (a), there exist a set $G \in\left\{G_{i}, 1 \leqslant i \leqslant M\right\}$ and a subsequence $\left\{m_{j}, j \geqslant 1\right\}$ of the sequence $\left\{n_{j}, j \geqslant 1\right\}$ such that
(b) $P\left[Y_{v_{m_{j}}} \in G ;{ }_{a_{v_{m_{j}}}^{2} \leqslant a_{i}^{2} \leqslant(1+1 / j) v_{v_{m_{j}}}^{2}}\left|Y_{i}-Y_{v_{m_{j}}}\right| \geqslant \varepsilon\right]>\varepsilon /(2 M) \quad$ for all $j \geqslant 1$.

Let $N_{j}=\min \left\{C_{j}^{1}, C_{j}^{2}\right\}, j \geqslant 1$, where

$$
C_{j}^{1}=\max \left\{i \in N: \alpha_{i}^{2} \leqslant(1+1 / j) \alpha_{v_{m_{j}}}^{2}\right\}, \quad C_{j}^{2}=\min \left\{i \geqslant v_{m_{j}}: Y_{i} \notin G\right\} .
$$

Since the sequence $\left\{\alpha_{n}^{2}, n \geqslant 1\right\}$ is non-decreasing, we have $\alpha_{v_{m_{j}}}^{2} \leqslant \alpha_{C_{j}}^{2}$ a.s., $\alpha_{v_{m_{j}}}^{2} \leqslant \alpha_{C_{j}}^{2}$ a.s., $\alpha_{N_{j}}^{2} \leqslant(1+1 / j) \alpha_{v_{m_{j}}}^{2}$ a.s. for all $j \geqslant 1$. Hence

$$
\alpha_{N_{j}}^{2} / \alpha_{v_{m_{j}}}^{2} \xrightarrow{P} 1 \quad(j \rightarrow \infty),
$$

which proves that the sequence $\left\{N_{j}, j \geqslant 1\right\}$ satisfies (6). But

$$
\begin{aligned}
& P\left[Y_{N_{j}} \notin G\right]=P\left[Y_{v_{m_{j}}} \notin G\right]+P\left[Y_{N_{j}} \notin G ; Y_{v_{m_{j}}} \in G\right] \\
& \geqslant P\left[Y_{v_{m_{j}}} \notin G\right]+P\left[Y_{v_{m_{j}}} \in G ;{ }_{\left.a_{v_{m_{j}}}^{2} \leqslant a_{i}^{2} \leqslant 1+1 j j\right)_{v_{m_{j}}}^{2}}\left|Y_{i}-Y_{v_{m_{j}}}\right| \geqslant \varepsilon\right] \\
& \geqslant P\left[Y_{v_{m_{j}}} \notin G\right]+\varepsilon /(2 M),
\end{aligned}
$$

which, by Theorem 2.1 of [3], proves that $Y_{N_{j}} \neq \mu(j \rightarrow \infty)$. This is a contradiction to (ii), and it proves that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ must satisfy ($\mathrm{A}^{* *}$) with the norming sequence $\left\{\alpha_{n} ; n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n\right.$ $\geqslant 1\}$. The proof of Theorem 3 is completed.

Remark 2. It is easy to see that putting $\alpha_{n}=k_{n}$ a.s., $v_{n}=n$ a.s., $n \geqslant 1$, Theorem 3 reduces to Theorem 1. It is so since in this case ($\mathrm{A}^{* *}$) reduces to (A°), whereas (6) reduces to (4). On the other hand, if $\alpha_{n}=k_{n}$ a.s. ($n \geqslant 1$), then Theorem 3 reduces to Theorem 2.

Corollary 1. Let $\left\{k_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive numbers and let $\left\{a_{n}, n \geqslant 1\right\}$ be a sequence of positive integers with $a_{n} \rightarrow \infty$ $(n \rightarrow \infty)$. The following conditions are equivalent:
(i) $Y_{a_{n}} \Rightarrow \mu(n \rightarrow \infty)$, and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{a_{n}, n \geqslant 1\right\}$;
(ii) $Y_{N_{n}} \Rightarrow \mu, n \rightarrow \infty$, for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying

$$
\begin{equation*}
k_{N_{n}}^{2} / k_{b_{n}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty), \tag{7}
\end{equation*}
$$

where $\left\{b_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $b_{n} \rightarrow \infty(n \rightarrow \infty)$ and $\left\{b_{n}, n \geqslant 1\right\} \subseteq\left\{a_{n}, n \geqslant 1\right\}$.

Corollary 2. Let $\left\{k_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive numbers and let $\left\{\dot{v}_{n}, n \geqslant 1\right\}$ be a sequence of positive integer - valued r.vs. such that $v_{n} \xrightarrow{P} \infty(n \rightarrow \infty)$. The following conditions are equivalent:
(i) $Y_{v_{n}} \Rightarrow \mu(n \rightarrow \infty)$, and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies $\left(\mathrm{A}^{* *}\right)$ with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$;
(ii) $Y_{N_{n}} \Rightarrow \mu(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying

$$
\begin{equation*}
k_{N_{n}}^{2} / k_{v_{a_{n}}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty), \tag{8}
\end{equation*}
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.
In the particular case, where $k_{n}^{2}=n, v_{n}=[\lambda n]$ a.s. $(n \geqslant 1)$, where λ is an r.v. such that $P[0<\lambda<\infty]=1$, the following conditions are equivalent:
(i') $Y_{[\lambda n]} \Rightarrow \mu(n \rightarrow \infty)$, and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies $\left(A^{* *}\right)$ with norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and filtering sequence $\{[\lambda n], n \geqslant 1\}$;
(ii') $Y_{N_{n}} \Rightarrow \mu(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying

$$
N_{n} / a_{n} \xrightarrow{P} \lambda \quad(n \rightarrow \infty),
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.
Corollary 3. Let $\left\{\alpha_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive r. vs. and let $\left\{a_{n}, n \geqslant 1\right\}$ be a sequence of positive integers with $a_{n} \rightarrow \infty$ ($n \rightarrow \infty$). The following conditions are equivalent:
(i) $Y_{a_{n}} \Rightarrow \mu(n \rightarrow \infty)$, and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies $\left(\mathrm{A}^{* *}\right)$ with the norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{a_{n}, n \geqslant 1\right\}$;
(ii) $Y_{N_{n}} \Rightarrow \mu(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying

$$
\begin{equation*}
\alpha_{N_{n}}^{2} / \alpha_{b_{n}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty), \tag{9}
\end{equation*}
$$

where $\left\{b_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $b_{n} \rightarrow \infty(n \rightarrow \infty)$ and $\left\{b_{n}, n \geqslant 1\right\} \subseteq\left\{a_{n}, n \geqslant 1\right\}$.

The following example elucidates the usefulness of these considerations.
Example 1 [12]. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of independent r.vs. defined by

$$
P\left[X_{2^{2^{n}}}=2^{2^{n-1}}\right]=P\left[X_{2^{2^{n}}}=-2^{2^{n-1}}\right]=\frac{1}{2} \quad(n \geqslant 1)
$$

and X_{k}, for $k \neq 2^{2^{n}}(n \geqslant 1, k \geqslant 1)$, has the normal distribution function $N(0,1)$ with mean zero and variance one. Let us put

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad s_{n}^{2}=\sum_{k=1}^{n} \sigma^{2} X_{k}
$$

and $Y_{n}:=S_{n} / s_{n}(n \geqslant 1)$. Then

$$
Y_{2^{2^{n}}-1} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty), \quad Y_{2^{2^{n}}} \Rightarrow X(n \rightarrow \infty),
$$

where $\mathscr{N}_{a, b}$ denotes a normal r.v. with mean a and variance b, and the r.v. X has the characteristic function $\varphi(t)=\cos (t / \sqrt{2}) e^{-t^{2} / 4}$ (cf. [12]). Let $\left\{N_{n}^{\prime}, n \geqslant 1\right\}$ be a sequence of positive integer-valued r.vs. such that

$$
\begin{equation*}
P\left[N_{n}^{\prime}=2^{2^{n}}-1\right]=1-\frac{1}{n}, \quad P\left[N_{n}^{\prime}=2^{2^{n}}\right]=\frac{1}{n} \quad(n \geqslant 1) . \tag{10a}
\end{equation*}
$$

Theorem 1 does not allow to confirm the weak convergence of the randomly indexed sequence $\left\{Y_{N_{n}^{\prime}}, n \geqslant 1\right\}$. But it is easy to see that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ of r.vs. satisfies (A°) with norming sequence $\left\{k_{n}, n \geqslant 1\right\}$, where $k_{n}=s_{n}(n \geqslant 1)$ (cf. [13], p. 11). Hence, by Lemma 1, the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies also (A**) with the norming sequence $\left\{s_{n}, n \geqslant 1\right\}$ and any filtering sequence $\left\{a_{n}, n \geqslant 1\right\}$ of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$. Thus, by Corollary $1, Y_{N_{n}} \Rightarrow \mathcal{N}_{0,1}(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $s_{N_{n}}^{2} / s_{b_{n}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{b_{n}, n \geqslant 1\right\} \subseteq\left\{2^{2^{n}}-1, n \geqslant 1\right\}\left(b_{n} \rightarrow \infty, n \rightarrow \infty\right)$, and $Y_{N_{n}} \Rightarrow X(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $s_{N_{n}}^{2} / s_{b_{n}^{\prime \prime}}^{\mathbf{2}} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{b_{n}^{\prime}, n \geqslant 1\right\} \subseteq\left\{2^{2^{n}}, n \geqslant 1\right\}\left(b_{n}^{\prime} \rightarrow \infty, n \rightarrow \infty\right)$. For the sequence $\left\{N_{n}^{\prime}, n\right.$ $\geqslant 1\}$, defined by (10a), we have

$$
s_{N_{n}}^{2} / s_{2^{2^{n}-1}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty)
$$

Hence we conclude that in this case $Y_{N_{n}^{\prime}} \Rightarrow \mathcal{N}_{0,1}(n \rightarrow \infty)$.
Let us further notice that if A is an event independent of $X_{k}(k \geqslant 1)$ and

$$
v_{n}= \begin{cases}2^{2^{n}}-1 & \text { on } A \tag{10b}\\ 2^{2^{n}} & \text { on } A^{c}\end{cases}
$$

then $\dot{P}\left[Y_{v_{n}}<x\right] \rightarrow \Phi(x) P(A)+P[X<x] P\left(A^{c}\right), n \rightarrow \infty$, i.e.

$$
\begin{equation*}
Y_{v_{n}} \Rightarrow \dot{\mathcal{N}}_{0,1} I(A)+X I\left(A^{c}\right) \quad(n \rightarrow \infty) \tag{10c}
\end{equation*}
$$

Moreover, the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{s_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$. Indeed, by the construction $v_{n} \xrightarrow{P} \infty(n \rightarrow \infty)$, and ν_{n} is for every $n \geqslant 1$ independent of $Y_{k}(k \geqslant 1)$. Since the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies (A^{0}) with norming sequence $\left\{s_{n}, n\right.$ $\geqslant 1\}$, Lemma 1 confirms the desired result. Hence, and by (10c) and Corollary 2, we have

$$
Y_{N_{n}} \Rightarrow \mathscr{N}_{0,1} I(A)+X I\left(A^{c}\right) \quad(n \rightarrow \infty)
$$

for every $\left\{N_{n}, n \geqslant 1\right\}$ such that $s_{N_{n}}^{2} / s_{v_{n}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{a_{n}, n \geqslant 1\right\}$ is a
sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$. This fact implies the statements after (10a), i.e. putting $A=\Omega$ or, equivalently, $v_{n}=2^{2^{n}}-1$ a.s. ($n \geqslant 1$), we obtain $Y_{N_{n}} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $s_{N_{n}}^{2} / s_{b_{n}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{b_{n}, n \geqslant 1\right\} \subseteq\left\{2^{2^{n}}-1, n \geqslant 1\right\} \quad\left(b_{n} \rightarrow \infty, n \rightarrow \infty\right) ;$ putting, however, $A=\varnothing$ or, equivalently, $v_{n}=2^{2^{n}}$ a.s. $(n \geqslant 1)$, we obtain $Y_{N_{n}} \Rightarrow X \quad(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $s_{N_{n}}^{2} / s_{b_{n}^{\prime}}^{2} \rightarrow 1(n \rightarrow \infty)$, where $\left\{b_{n}^{\prime}, n \geqslant 1\right\} \subseteq\left\{2^{2^{n}}, n \geqslant 1\right\}\left(b_{n}^{\prime} \rightarrow \infty, n \rightarrow \infty\right)$.
4. More about usefulneses of the Anscombe random condition. Now we shall give two examples of sequences $\left\{Y_{n}, n \geqslant 1\right\}$ which fulfil ($\mathrm{A}^{* *}$), whereas they satisfy neither (A) nor $\left(A^{\circ}\right)$. At the end of this section we shall give an example proving Remark 1.

Example 2. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of r.vs. defined as follows: the r.vs. $X_{k}, k \neq 2^{2^{n}}(n \geqslant 0, k \geqslant 1)$, are independent and have the normal distribution function $N(0,1)$, and

$$
X_{2}=-X_{1}, \quad X_{2^{2^{n}}}=-\sum_{j=2^{2^{n-1}}+1}^{2^{2^{n}-1}} X_{j} \quad(n \geqslant 1)
$$

Let us put $S_{n}=\sum_{j=1}^{n} X_{j}, Y_{n}:=S_{n} / \sqrt{n}(n \geqslant 1)$. Then

$$
\begin{equation*}
Y_{2^{2^{n}}}=0 \text { a.s. }(n \geqslant 0), \quad Y_{2^{2^{n}-1}} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty) \tag{11}
\end{equation*}
$$

Indeed, for every $n \geqslant 0$ we have $S_{2^{2^{n}}}=0$ a.s., which proves that $Y_{2^{2^{n}}}=0$ a.s. $(n \geqslant 0)$. For the proof of the second property in (11) we put $S_{n}=S_{n}^{*}$ $+S_{n}^{* *}(n \geqslant 1)$, where

$$
\begin{equation*}
S_{n}^{*}=\sum_{i=1}^{n} * X_{i}=\sum_{\substack{i=1 \\ i \in N^{*}}}^{n} X_{i}, \quad S_{n}^{* *}=\sum_{i=1}^{n} * * X_{i}=\sum_{\substack{i=1 \\ i \in N^{* *}}}^{n} X_{i} \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
N^{*}=\left\{j \in N: j \neq 2^{2^{n}}, n \geqslant 0\right\}, \quad N^{* *}=N \backslash N^{*} \tag{12b}
\end{equation*}
$$

and note that, for every $n \geqslant 1, S_{n}^{*}$ is the sum of independent r.vs., $S_{2^{2}}^{*}$ $=S_{2^{2^{n}-1}}^{*}$ a.s. for $n \geqslant 0$, while
(12c) $S_{1}^{* *}=0$ a.s.,

$$
S_{2^{2^{n}-i}}^{* *}=-S_{2^{2^{n-1}}-1}^{*} \text { a.s. for } 1 \leqslant i \leqslant 2^{2^{n}}-2^{2^{n-1}} \quad(n \geqslant 1) .
$$

Moreover, by the Kolmogorov's inequality we have, for every $\varepsilon>0$,

$$
\begin{aligned}
& P\left[\mid S_{2^{2^{n}-1}}^{* *}\right. \\
&\left.\sqrt{2^{2^{n}}-1} \mid \geqslant \varepsilon\right]=P\left[| |_{2_{i=1}^{2^{n-1}-1}}^{i \in N^{n}} X_{i} \mid \geqslant \varepsilon \sqrt{2^{2^{n}}-1}\right] \\
& \leqslant 2^{2^{n-1} / \varepsilon^{2}\left(2^{2^{n}}-1\right) \rightarrow 0 \quad(n \rightarrow \infty) .}
\end{aligned}
$$

Hence, and taking into account that

$$
\begin{aligned}
& E \exp \left\{i t S_{2^{2^{n}-1}}^{*} / \sqrt{2^{2^{n}}-1}\right\}=E \exp \left\{i t \sum_{\substack{j=1 \\
j=N^{n}}}^{2^{2^{n}-1}} X_{j} / \sqrt{2^{2^{n}}-1}\right\} \\
& \quad=\exp \left\{-t^{2}\left(2^{2^{n}}-n-1\right) / 2\left(2^{2^{n}}-1\right)\right\} \rightarrow \exp \left\{-t^{2} / 2\right\} \quad(n \rightarrow \infty),
\end{aligned}
$$

we obtain

$$
Y_{2^{2^{n}-1}}=S_{2^{2^{n}-1}}^{*} / \sqrt{2^{2^{n}-1}}+S_{2^{2^{n}-1}}^{* *} / \sqrt{2^{2^{n}}-1} \Rightarrow \mathscr{N}_{0,1} \quad(n \rightarrow \infty),
$$

which ends the proof of (11).
Now we shall prove that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ does not satisfy the Anscombe condition (A).

Indeed, if the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ fulfilled (A), then in view of the remarks after Definition it would fulfil ($\mathrm{A}^{* *}$) with norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and any filtering sequence $\left\{a_{n}, n \geqslant 1\right\}$ of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$, e.g. with $a_{n}=2^{2^{n}}-1(n \geqslant 1)$ for which

$$
Y_{2^{2^{n}-1}} \Rightarrow \mathscr{N}_{0,1} \quad(n \rightarrow \infty) .
$$

Hence, by Corollary 1, $Y_{N_{n}} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ such that $N_{n} /\left(2^{2^{n}}-1\right) \xrightarrow{P} 1(n \rightarrow \infty)$. So then, for $N_{n}=2^{2^{n}}$ a.s. $(n \geqslant 1)$, we would have

$$
Y_{2^{2}} \Rightarrow \mathscr{N}_{0,1} \quad(n \rightarrow \infty),
$$

which is a contradiction to (11). Thus, the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ does not satisfy ($\mathrm{A}^{* *}$) with the norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and filtering sequence $\left\{2^{2^{n}}-1, n \geqslant 1\right\}$, and then, by the earlier considerations, we conclude that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ does not satisfy (A).

And now we shall prove that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($A^{* *}$) with the norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and filtering sequence $\left\{3^{3^{n}}, n \geqslant 1\right\}$. To this end we note that for every $\varepsilon>0$ and for every $\delta>0$ we have

$$
\begin{align*}
& P\left[\max _{\left|i-3^{2}\right| \mid \leqslant \delta 3^{n}}\left|Y_{i}-Y_{3^{2^{n}}}\right| \geqslant \varepsilon\right] \leqslant P\left[\max _{\mid i-3^{2^{n} \mid \leqslant \delta 3^{2^{n}}}}\left|S_{i}-S_{3^{2^{n}}}\right| \geqslant \varepsilon \sqrt{3^{2^{n}}} / 2\right]+ \tag{13}\\
&+P\left[\max _{\mid i-3^{2^{n} \mid \leqslant \delta 3^{n}}}\left|S_{i}\right|\left|3^{2^{n}}-i\right| / \sqrt{i} 3^{2^{n}} \geqslant \varepsilon / 2\right]
\end{align*}
$$

$$
\begin{aligned}
& \leqslant 2 P\left[\max _{\left[(1-\delta) 3^{2^{n}}\right] \leqslant i \leqslant\left[(1+\delta) 3^{2^{n}}\right]}\left|S_{i}-S_{\left[(1-\delta) 3^{2^{n}}\right]}\right| \geqslant \varepsilon \sqrt{3^{2^{n}}} / 4\right]+ \\
& \quad+P\left[\max _{\left[(1-\delta) 3^{2^{n}}\right] \leqslant i \leqslant\left[(1+\delta) 3^{2^{n}}\right]}\left|S_{i}\right| \geqslant \varepsilon \sqrt{\left.\left[(1-\delta) 3^{2^{n}}\right] / 2 \delta\right],}\right.
\end{aligned}
$$

where $[x]$ denotes the integral part of the real number x. Further, by (12c) and the Kolmogorov's inequality, the first term on the right -hand side of (13) is less than or equal to

$$
\begin{aligned}
& 2 P\left[\max _{\left[(1-\delta) 3^{2^{n}}\right] \leqslant i \leqslant\left[(1+\delta) 3^{\left.2^{n}\right]}\right.}\left|S_{i}^{*}-S_{\left[(1-\delta) 3^{\left.2^{n}\right]}\right.}^{*}\right| \geqslant \varepsilon \sqrt{3^{2^{n}}} / 4\right] \\
& \quad \leqslant 32\left\{\left[(1+\delta) 3^{2^{n}}\right]-\left[(1-\delta) 3^{2^{n}}\right]\right\} / \varepsilon^{2} 3^{2^{n}} \rightarrow 64 \delta / \varepsilon^{2} \quad(n \rightarrow \infty),
\end{aligned}
$$

since, for $\left[(1-\delta) 3^{2^{n}}\right] \leqslant i \leqslant\left[(1+\delta) 3^{2^{n}}\right]$, we have

$$
S_{i}^{* *}-S_{\left[(1-\delta) 3^{\left.2^{n}\right]}\right.}^{* *}=\sum_{j=\left[(1-\delta) 3^{2}\right.}^{\left.j \in N^{n}\right]+1} X_{j}=0 \quad \text { a.s. }
$$

while the second term on the right - hand side of (13) is less than or equal to

$$
\begin{aligned}
& \quad P\left[\max _{\left[(1-\delta) 3^{2^{n}}\right] \leqslant i \leqslant\left[(1+\delta) 3^{2^{n}}\right]}\left|S_{i}^{*}\right| \geqslant \varepsilon \sqrt{\left.\left[(1-\delta) 3^{2^{n}}\right] / 4 \delta\right]}+\right. \\
& \quad+P\left[\max _{\left[(1-\delta) 3^{2^{n}}\right] \leqslant i \leqslant\left[(1+\delta) 3^{2^{n}}\right]}\left|S_{i}^{* *}\right| \geqslant \varepsilon \sqrt{\left.\left[(1-\delta) 3^{2^{n}}\right] / 4 \delta\right]}\right. \\
& \leqslant 16 \delta^{2}\left[(1+\delta) 3^{2^{n}}\right] / \varepsilon^{2}\left[(1-\delta) 3^{2^{n}}\right]+P\left[\left|S_{2^{2^{n}}-1}^{*}\right| \geqslant \varepsilon \sqrt{\left.\left[(1-\delta) 3^{2^{n}}\right] / 4 \delta\right]}\right. \\
& \leqslant 16 \delta^{2}\left\{\left[(1+\delta) 3^{2^{2 n}}\right]+2^{2^{2 n}}\right\} / \varepsilon^{2}\left[(1-\delta) 3^{2^{n}}\right] \rightarrow 16 \delta^{2}(1+\delta) / \varepsilon^{2}(1-\delta) \quad(n \rightarrow \infty),
\end{aligned}
$$

where $16 \delta^{2}(1+\delta) / \varepsilon^{2}(1-\delta) \leqslant 64 \delta / \varepsilon^{2}$ for $0<\delta \leqslant 1 / 2$.
Hence, for every $\varepsilon>0$ and $0<\delta \leqslant 1 / 2$, we have

$$
\limsup _{n \rightarrow \infty} P\left[\max _{\left|i-3^{2^{n}}\right| \leqslant \delta 3^{2^{n}}}\left|Y_{i}-Y_{3^{2 n}}\right| \geqslant \varepsilon\right] \leqslant 128 \delta / \varepsilon^{2},
$$

which proves that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and filtering sequence $\left\{3^{2^{n}}, n \geqslant 1\right\}$.

Let us further notice that $Y_{3^{2}} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty)$. Indeed, since for every $n \geqslant 1$ we have

$$
Y_{3^{2^{n}}}=S_{3^{2^{n}}}^{*} / \sqrt{3^{2^{n}}}+S_{3^{2^{n}}}^{* *} / \sqrt{3^{2^{n}}}
$$

where, by the Kolmogorov inequality, for every $\varepsilon>0$,

$$
P\left[\left|S_{3^{2^{n}}}^{* *} / \sqrt{3^{2^{n}}}\right| \geqslant \varepsilon\right]=P\left[\left|S_{2^{2^{n}-1}}^{*}\right| \geqslant \varepsilon \sqrt{3^{2^{n}}}\right] \leqslant 2^{2^{n}} / \varepsilon^{2} 3^{2^{n}} \rightarrow 0 \quad(n \rightarrow \infty)
$$

and

$$
\begin{aligned}
E \exp \left\{i t S_{3^{2^{n}}}^{*}\right. & \left.\sqrt{3^{2^{n}}}\right\}=E \exp \left\{\text { it } \sum_{\substack{j=1 \\
j \in N^{*}}}^{3^{2^{n}}} X_{j} / \sqrt{3^{2^{n}}}\right\} \\
& =\exp \left\{-t^{2}\left(3^{2^{n}}-n-1\right) / 2 \cdot 3^{2^{n}}\right\} \rightarrow \exp \left\{-t^{2} / 2\right\} \quad(n \rightarrow \infty),
\end{aligned}
$$

we have $Y_{3^{2^{n}}} \Rightarrow \mathcal{N}_{0,1}(n \rightarrow \infty)$. Hence, by Corollary $1, Y_{N_{n}} \Rightarrow \mathcal{N}_{0,1}(n \rightarrow \infty)$ for every ${ }^{3^{2}}\left\{N_{n}, n \geqslant 1\right\}$ satisfying $N_{n} / b_{n} \xrightarrow{P} 1 \quad(n \rightarrow \infty)$, where $\left\{b_{n}, n \geqslant 1\right\}$ $\subseteq\left\{3^{2^{n}} ; n \geqslant 1\right\}\left(b_{n} \rightarrow \infty, n \rightarrow \infty\right)$.

Example 3. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of r.vs. defined as follows: the r.vs. $X_{k}, k \neq 2^{2^{n}}(n \geqslant 0)$, are independent and have the normal distribution function $N(0,1)$ for $k \neq 3^{2^{n}}(n \geqslant 1)$ and

$$
P\left[X_{3^{2^{n}}}=3^{2^{n-1}}\right]=P\left[X_{3^{2^{n}}}=-3^{2^{n-1}}\right]=\frac{1}{2} \quad(n \geqslant 1),
$$

while

$$
X_{2}=-X_{1}, \quad X_{2^{2^{n}}}=-\sum_{j=2^{2^{n-1}}+1}^{2^{2^{n}-1}} X_{j} \quad(n \geqslant 1) .
$$

Let us put

$$
k_{n}^{2}=\sum_{j=1}^{n} \sigma^{2} X_{j} \quad \text { for } n \neq 2^{2^{m}}(m \geqslant 0),
$$

and

$$
k_{2^{2^{n}}}^{2}=k_{2^{2^{n}-1}}^{2} \quad \text { for } n \geqslant 0, \quad S_{n}=\sum_{j=1}^{n} X_{j} \text { and } Y_{n}:=S_{n} / k_{n} \quad(n \geqslant 1)
$$

Then

$$
\begin{equation*}
Y_{2^{2^{n}}}=0 \text { a.s., } n \geqslant 0, \quad Y_{2^{2^{n}}-1} \Rightarrow \mathscr{N}_{0,1} \quad(n \rightarrow \infty) \tag{14}
\end{equation*}
$$

Indeed, for every $n \geqslant 0, S_{2^{2^{n}}}=0$ a.s., which proves that $Y_{2^{2^{n}}}=0$ a.s. for $n \geqslant 0$. For the proof of ${ }^{2^{2}}$ the second property in (14) ${ }^{2}$ we notice that $k_{2^{2^{n}-1}}^{2} \approx \dot{2}^{2^{n}}$ for sufficiently large n, and

$$
Y_{2^{2^{n}-1}}=S_{2^{2^{n}-1}}^{*} / k_{2^{2^{n}-1}}+S_{2^{2^{n}-1}}^{* *} / k_{2^{2^{n}-1}} \quad(n \geqslant 1)
$$

where S_{n}^{*} and $S_{n}^{* *}$ are defined in (12). Furthermore, by (12c), we have

$$
\begin{aligned}
& Y_{2^{2^{n}-1}}=\left(S_{2^{2^{n}-1}}^{*}-S_{2^{2^{n-1}-1}}^{*}\right) / k_{2^{2^{n}-1}}=\sum_{j=2^{2^{n-1}}}^{2^{2^{n}-1}} X_{j} / k_{2^{2^{n}-1}} \\
&=\sum_{j=2^{2^{n-1}+1}}^{2^{2^{n}-1}} X_{j} / k_{2^{2^{n}-1}} \quad \text { for every } n \geqslant 1,
\end{aligned}
$$

where

$$
\begin{aligned}
& E \exp \left\{i t \sum_{j=2^{2^{n-1}+1}}^{2^{2^{n}-1}} X_{j} / k_{2^{2^{n}-1}}\right\} \\
& =\cos \left(t \cdot 3^{2^{n-2}} / k_{2^{2^{n}-1}}\right) \exp \left\{-t^{2}\left(2^{2^{n}}-2^{2^{n-1}}-1\right) / 2 k_{2^{2 n}-1}^{2}\right\} \\
&
\end{aligned} \quad \rightarrow \exp \left\{-t^{2} / 2\right\} \quad(n \rightarrow \infty) .
$$

Hence, $Y_{2^{2^{n}-1}} \Rightarrow \mathcal{N}_{0,1}(n \rightarrow \infty)$, which completes the proof of (14).
From (14) and that

$$
k_{2^{2^{n}}}^{2}=k_{2^{2^{n}-1}}^{2} \quad(n \geqslant 1)
$$

we conclude that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies neither the Anscombe condition (A) nor the generalized Anscombe condition (A°) with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$. The proofs of these facts run similarly as in Example 2.

Now we shall prove that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{3^{2^{n}}, n \geqslant 1\right\}$. To this end - we note that, for every $\varepsilon>0$ and for every $0<\delta<1$, we have

$$
\begin{aligned}
& \leqslant P\left[\max _{\left|k_{i}^{2}-k^{2} 3^{22^{n}}\right| \leqslant \delta \mathbf{3}^{2}}\left|S_{i}-S_{3^{2^{n}}}\right| \geqslant \varepsilon k_{3^{2^{n}}} / 2\right]+ \\
& +P\left[_{\mid k_{i}^{2}-k_{3^{2^{n}}}{ }^{1} \leq \delta \mathbf{3}^{2^{n}}}\left|S_{i}\right|\left|k_{3^{2^{n}}}^{2}-k_{i}^{2}\right| / k_{i} k_{3^{2^{n}}}^{2} \geqslant \varepsilon / 2\right] \\
& \leqslant P\left[\max _{\mathbf{k}_{\mathbf{3}^{2^{n}}} \leqslant k_{i}^{2} \leqslant(1+\delta) \mathbf{k}_{3^{2}}^{\mathbf{2}^{\boldsymbol{n}}}}\left|S_{i}^{*}-S_{\mathbf{3}^{\mathbf{n}}}^{*}\right| \geqslant \varepsilon k_{3^{2^{n}}} / 2\right]+
\end{aligned}
$$ since $k_{3^{2^{n}-1}}^{2} \approx 3^{2^{n}}$ and $k_{3^{2^{n}}}^{2} \approx 2 \cdot 3^{2^{n}}$ for sufficiently large n, whence

$$
\left\{i \in N:\left|k_{i}^{2}-k_{3^{2^{n}}}^{2}\right| \leqslant \delta k_{3^{2^{n}}}^{2}\right\}=\left\{i \in N: k_{3^{2^{n}}}^{2} \leqslant k_{i}^{2} \leqslant(1+\delta) k_{3^{2^{n}}}^{2}\right\}
$$

for sufficiently large n, and since for $i \in\left\{k_{3^{2^{n}}}^{2} \leqslant k_{i}^{2} \leqslant(1+\delta) k_{3^{2^{n}}}^{2}\right\}$ we have

$$
S_{i}^{* *}-S_{3^{2^{n}}}^{* *}=\sum_{\substack{j=3^{2^{n}+1} \\ j \in N^{* *}}}^{i} X_{j}=0 \quad \text { a.s. }
$$

for sufficiently large n.
As S_{n}^{*} is the sum of independent r.vs. with finite variances, then, by the

Kolmogorov's inequality, the first term on the right - hand side of (15) is less than or equal to $4 \delta / \varepsilon^{2}$, the second one is less than or equal to

$$
16 \delta^{2}(1+\delta) \underset{3^{2^{n}}}{2} / \varepsilon^{2}{\underset{32^{n}}{2}}_{k^{2}}^{n} 32 \delta / \varepsilon^{2},
$$

and the third term on the right -hand side of (15) is equal to

$$
P\left[\left|S_{2^{2^{n}}-1}^{*}\right| \geqslant \varepsilon k_{3^{2^{n}}} / 4 \delta\right] \leqslant 16 \delta^{2} k_{2^{2^{n}-1}}^{2} 1 \varepsilon^{2} k_{3^{2^{n}}}^{2} \rightarrow 0 \quad(n \rightarrow \infty) .
$$

Hence, for every $\varepsilon>0$ and for every $0<\delta<1$, we have

$$
\limsup _{n \rightarrow \infty} P\left[\max _{\left|k_{i}^{2}-k_{\mathbf{3}^{2 n^{n}}}^{\mathbf{2}}\right| \leqslant \delta \mathbf{3}_{\mathbf{3}^{\mathbf{n}^{n}}}}\left|Y_{i}-Y_{3^{2^{n}}}\right| \geqslant \varepsilon\right] \leqslant 36 \delta / \varepsilon^{2},
$$

which proves that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{3^{2^{n}}, n \geqslant 1\right\}$.

Similarly it can be proved that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies (A**) with norming sequence $\left\{k_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{3^{2^{n}}-1, n \geqslant 1\right\}$.

Let us further notice that

$$
\begin{equation*}
Y_{3^{2}-1} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty), \quad Y_{3^{2}} \Rightarrow X(n \rightarrow \infty), \tag{16}
\end{equation*}
$$

and

$$
k_{3^{2^{n}}}^{2} / k_{3^{2 n}-1}^{2} \rightarrow 2 \quad(n \rightarrow \infty)
$$

where X is an r.v. with the characteristic function

$$
\varphi(t)=\cos (t / \sqrt{2}) e^{-t^{2} / 4}
$$

Then, by ${ }_{P}$ Corollary $1, Y_{N_{n}} \Rightarrow \mathcal{N}_{0,1}(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $k_{N_{n}}^{2} / k_{b_{n}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where

$$
\left\{b_{n}, n \geqslant 1\right\} \subseteq\left\{3^{2^{n}}-1, n \geqslant 1\right\} \quad\left(b_{n} \rightarrow \infty, n \rightarrow \infty\right)
$$

and $Y_{N_{n}} \Rightarrow X(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $k_{N_{n}}^{2} / k_{b_{n}^{\prime}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{b_{n}^{\prime}, n \geqslant 1\right\} \subseteq\left\{3^{2^{n}}, n \geqslant 1\right\}\left(b_{n}^{\prime} \rightarrow \infty, n \rightarrow \infty\right)$.

Let us still notice that if A is an event independent of $X_{k}, k \neq 2^{2^{n}}$ ($n \geqslant 0, k \geqslant 1$), and, for $n \geqslant 1$,

$$
v_{n}= \begin{cases}3^{2^{n}}-1 & \text { on } A \tag{17}\\ 3^{2^{n}} & \text { on } A^{c}\end{cases}
$$

then $P\left[Y_{v_{n}}<x\right] \rightarrow \Phi(x) P(A)+P[X<x] P\left(A^{c}\right), n \rightarrow \infty$, i.e.

$$
\begin{equation*}
Y_{v_{n}} \Rightarrow \mathscr{N}_{0,1} I(A)+X I\left(A^{c}\right) \quad(n \rightarrow \infty), \tag{17b}
\end{equation*}
$$

and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies $\left(\mathrm{A}^{* *}\right)$ with the norming sequence $\left\{k_{n}, n\right.$ $\geqslant 1\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$.

Thus, by Corollary 2,

$$
Y_{N_{n}} \Rightarrow \mathscr{N}_{0,1} I(A)+X I\left(A^{c}\right) \quad(n \rightarrow \infty)
$$

for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $k_{N_{n}}^{2} / k_{v_{a_{n}}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$. That fact implies the statements after (16), i.e. putting $A=\Omega$ or, equivalently, $v_{n}=3^{2^{n}}-1$ a.s. $(n \geqslant 1)$, we obtain $Y_{N_{n}} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $k_{N_{n}}^{2} / k_{b_{n}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{b_{n}, n \geqslant 1\right\} \subseteq\left\{3^{2^{n}}-1, n \geqslant 1\right\} \quad\left(b_{n} \rightarrow \infty, n \rightarrow \infty\right)$; putting however $A=\varnothing$ or, equivalently, $v_{n}=3^{2^{n}}$ a.s. $(n \geqslant 1)$, we obtain $Y_{N_{n}} \Rightarrow X(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying $k_{N_{n}}^{2} / k_{b_{n}^{\prime}}^{2} \xrightarrow{P} 1(n \rightarrow \infty)$, where $\left\{b_{n}^{\prime}, n \geqslant 1\right\} \subseteq\left\{3^{2^{n}}, n \geqslant 1\right\}\left(b_{n}^{\prime} \rightarrow \infty, n \rightarrow \infty\right)$.

The following example proves Remark 1.
Example 4 [5]. Let U, Z_{1}, Z_{2}, \ldots be independent r.vs. such that U has a uniform distribution on $(0,1)$ and, for each $n \geqslant 1, Z_{n}$ has a normal distribution with mean zero and variance one. Let

$$
\begin{gathered}
Y_{n}=n^{-1 / 2} \sum_{i=1}^{n} Z_{i} \quad(n \geqslant 1), \\
J(\omega)=\left\{\left[2^{n} U(\omega)\right]+1,1 \leqslant n<\infty\right\},
\end{gathered}
$$

and

$$
Y_{n}^{\prime}=Y_{n} I[n \notin J] \quad(n \geqslant 1) .
$$

The sequence $\left\{Y_{n}^{\prime}, n \geqslant 1\right\}$ satisfies (A) [5] and then, by Lemma 2, it satisfies as well $\left(\mathrm{A}^{* *}\right)$ with norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and any filtering sequence $\left\{N_{n}, n \geqslant 1\right\}$ of positive integer - valued r.vs. satisfying (3) (i.e. (4) with $k_{n}^{2}=n, n \geqslant 1$).

Let us put $N_{n}=\left[2^{n} U\right], n \geqslant 1$. The sequence $\left\{N_{n}, n \geqslant 1\right\}$ does not satisfy (3) but satisfies (5). Indeed, putting e.g. $v_{n}=\left[2^{n} U\right]+1, n \geqslant 1$, we have

$$
N_{n} / v_{n} \xrightarrow{P} 1 \quad(n \rightarrow \infty),
$$

i.e. condition (5) with $k_{n}^{2}=n\left(a_{n}=n, n \geqslant 1\right)$. Now we shall prove that the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ does not satisfy ($\mathrm{A}^{* *}$) with the norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and filtering sequence $\left\{N_{n}, n \geqslant 1\right\}$. This fact will prove Remark 1.

It follows from Theorem 1 of [11], p. 472, that

$$
\begin{equation*}
Y_{N_{n}} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty), \text { where } N_{n}=\left[2^{n} U\right](n \geqslant 1) \tag{18}
\end{equation*}
$$

since $Y_{n} \Rightarrow \mathscr{N}_{0,1}(n \rightarrow \infty), N_{n} \xrightarrow{P} \infty(n \rightarrow \infty)$ and, for every $n \geqslant 1$, the r.v. N_{n} is independent of $Z_{i}(i \geqslant 1)$. Furthermore, by the construction of the set $J(\omega)$
we have

$$
\begin{aligned}
& P\left[Y_{N_{n}}^{\prime} \neq Y_{N_{n}}\right]=P\left[N_{n} \in J\right] \leqslant P\left[U<(n-1) 2^{-n}\right]+ \\
& +\sum_{k=n}^{2^{n}} P\left[(k-1) 2^{-n} \leqslant U<k 2^{-n} ;\left[2^{n} U\right] \in\left\{\left[2^{n} U\right]+1,1 \leqslant n<\infty\right\}\right] \\
& \leqslant o_{n}(1)+\sum_{k=n}^{2^{n}} P[k-1) 2^{-n} \leqslant U<k 2^{-n} ; k-2 \leqslant 2^{m} U<k-1 \\
& \text { for some } m \geqslant 1] \\
& \leqslant o_{n}(1)+\sum_{k=n}^{2^{n}} \sum_{m=\log _{2} 2^{n(1-2 / n)}}^{n} P\left[(k-1) 2^{-n}\right. \\
& \left.\leqslant U<k 2^{-n} ;(k-2) 2^{-m} \leqslant U<(k-1) 2^{-m}\right] \\
& \leqslant o_{n}(1)+\sum_{m=\log _{2} 2^{n^{n}}(1-2 / n)}^{n} P\left[(n-2) 2^{-m} \leqslant U<\left(2^{n}-1\right) 2^{-m}\right] \\
& =o_{n}(1)+\left(2^{n}-n+1\right) \sum_{m=\log _{2} 2^{n}(1-2 / n)}^{n} 2^{-m} \\
& =o_{n}(1)+\frac{2^{-n+1}\left(2^{n}-n+1\right)}{1-\frac{2}{n}} \frac{2}{n} \rightarrow 0 \quad(n \rightarrow \infty),
\end{aligned}
$$

since $o_{n}(1)=P\left[U<(n-1) 2^{-n}\right] \rightarrow 0(n \rightarrow \infty)$. This fact and (18) imply (cf. [7], p. 278) $Y_{N_{n}}^{\prime} \Rightarrow \mathcal{N}_{0,1}(n \rightarrow \infty)$.

Since (5^{\prime}) holds, and

$$
\begin{equation*}
Y_{v_{n}}^{\prime}=0 \text { a.s. }(n \geqslant 1), \quad \text { where } v_{n}=\left[2^{n} U\right]+1(n \geqslant 1) \text {, } \tag{19}
\end{equation*}
$$

we conclude that the sequence $\left\{Y_{n}^{\prime}, n \geqslant 1\right\}$ does not satisfy ($\mathrm{A}^{* *}$) with the norming sequence $\{\sqrt{n}, n \geqslant 1\}$ and filtering sequence $\left\{N_{n}, n \geqslant 1\right\}$, where $N_{n}=\left[2^{n} U\right], n \geqslant 1$.
5. Applications to the martingale random limit theorems. We shall now show that the given results allow to generalize the martingale random central limit theorem of Rao [8].

We write $Y_{n} \Rightarrow \mu$ (stably), $n \rightarrow \infty$, if $Y_{n} \Rightarrow \mu(n \rightarrow \infty)$ and, for every $B \in \mathscr{F}$ with $P(B)>0$, there exists a measure μ_{B} such that $Y_{n} \Rightarrow \mu_{B} / P(B), n \rightarrow \infty$, under the conditional measure $P(\cdot \mid B)$. In the special case where $\mu_{B}=\mu P(B)$ for all $B \in \mathscr{F}$, we write $Y_{n} \Rightarrow \mu$ (mixing), $n \rightarrow \infty$ [10].

In what follows we shall need the following simple consequence of Theorem 3:

Theorem 4. Let $\left\{\alpha_{n}, n \geqslant 1\right\}$ be a non-decreasing sequence of positive r.vs.
and let $\left\{v_{n}, n \geqslant 1\right\}$ be a sequence of positive integer-valued r.vs. such that $v_{n} \xrightarrow{\boldsymbol{P}} \infty(n \rightarrow \infty)$. The following conditions are equivalent:
(i) $Y_{v_{n}} \Rightarrow \mu$ (stably), $n \rightarrow \infty$, and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies $\left(\mathrm{A}^{* *}\right)$ with the norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$;
(ii) $Y_{N_{n}} \Rightarrow \mu$ (stably), $n \rightarrow \infty$, for every sequence $\left\{N_{n}, n \geqslant 1\right\}$ of positive integer-valued r.vs. satisfying (6), i.e.

$$
\alpha_{N_{n}}^{2} / \alpha_{v_{a_{n}}}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty),
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$.
Proof. Obviously, (ii) implies (i). To prove the reverse implication let B be a random event from \mathscr{F} with $P(B)>0$. Then, by (i), there exists a probability measure μ_{B} such that $Y_{v_{n}} \Rightarrow \mu_{B} / P(B)(n \rightarrow \infty)$ under the measure $P(\cdot \mid B)$. Furthermore, the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies $\left(A^{* *}\right)$ with the norming sequence $\left\{\alpha_{n}, n \geqslant 1\right\}$ and filtering sequence $\left\{v_{n}, n \geqslant 1\right\}$ under the measure $P(\cdot \mid B)$.

Indeed, for every $\varepsilon>0$ we can choose $\delta>0, \delta=\delta(\varepsilon, B)$, such that

$$
\underset{n \rightarrow \infty}{\limsup } P\left[\max _{\left|\alpha_{i}^{2}-a_{v_{n}}^{2}\right| \leqslant \delta \alpha_{v_{n}}^{2}}\left|Y_{i}-Y_{v_{n}}\right| \geqslant \varepsilon P(B)\right] \leqslant \varepsilon P(B) .
$$

Hence

$$
\begin{aligned}
& \underset{n \rightarrow \infty}{\limsup } P\left[{ }_{\left|\alpha_{i}^{2}-\alpha_{v_{n}}^{2}\right| \leqslant \delta \alpha_{v_{n}}^{2}}^{\max }\left|Y_{i}-Y_{v_{n}}\right| \geqslant \varepsilon \mid B\right] \\
& \leqslant \limsup _{n \rightarrow \infty} P\left[\max _{\left|\alpha_{i}^{2}-\alpha_{v_{n}}^{2}\right| \leqslant \delta \alpha_{v_{n}}^{2}}\left|Y_{i}-Y_{v_{n}}\right| \geqslant \varepsilon\right] / P(B) \\
& \quad{ }^{\limsup } P\left[\max _{n \rightarrow \infty}\left|Y_{\left|\alpha_{i}^{2}-\alpha_{v_{n}}^{2}\right| \leqslant \delta v_{v_{n}}^{2}}\right| Y_{i}-Y_{v_{n}} \mid \geqslant \varepsilon P(B)\right] / P(B) \leqslant \varepsilon,
\end{aligned}
$$

which states the desired result.
Thus, by Theorem 3, $Y_{N_{n}} \Rightarrow \mu_{B} / P(B), n \rightarrow \infty$, under the measure $P(\cdot \mid B)$, for every sequence $\left\{N_{n}, n \geqslant 1\right\}$ of positive integer - valued r.vs. satisfying (6). Hence, $Y_{N_{n}} \Rightarrow \mu$ (stably) $(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying (6).

Remark 3. We note that if $Y_{v_{n}} \Rightarrow \mu$ (mixing) ($n \rightarrow \infty$) not only stably, then in part (ii) of Theorem 4 we obtain $Y_{N_{n}} \Rightarrow \mu$ (mixing), $n \rightarrow \infty$.

Let $\left\{X_{n}, \mathscr{F}_{n}, n \geqslant 1\right\}$ be a martingale difference sequence (MDS) with σ_{n}^{2} $=E\left(X_{n}^{2} \mid \mathscr{F}_{n-1}\right)<\infty$ a.s. $(n \geqslant 1) . \mathscr{F}_{0}$ need not be the trivial sigma field $\{\varnothing, \Omega\}$. We put

$$
V_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}, \quad s_{n}^{2}=E V_{n}^{2} \quad(n \geqslant 1)
$$

and assume that s_{n}^{2} is finite for all $n \geqslant 1$, and $s_{n}^{2} \rightarrow \infty(n \rightarrow \infty)$. Furthermore, we assume that the sequence $\left\{X_{n}, n \geqslant 1\right\}$ satisfies the following φ-mixing condition:
(20)

$$
\sup \left\{|P(B \mid A)-P(B)|: A \in \mathfrak{M}_{1}^{k}, B \in \mathfrak{M}_{k+n}^{\infty}\right\} \leqslant \varphi(n)
$$

with $\varphi(n) \rightarrow 0(n \rightarrow \infty)$, where $\mathfrak{M}_{n}^{m}=\sigma\left\{X_{k}, n \leqslant k \leqslant m\right\}(1 \leqslant n \leqslant m \leqslant \infty)$.
The following theorem extends and strengthens Theorem 1 of [8]:
Theorem 5. Let $\left\{X_{n}, \mathscr{F}_{n}, n \geqslant 1\right\}$ be an MDS satisfying (20). Suppose that

$$
\begin{equation*}
Y_{n}:=S_{n} / s_{n} \Rightarrow \mu \quad(n \rightarrow \infty) \tag{21}
\end{equation*}
$$

where

$$
S_{n}=\sum_{k=1}^{n} X_{k} \quad(n \geqslant 1)
$$

If $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued r.vs. such that

$$
\begin{equation*}
s_{N_{n}}^{2} / s_{\left[\lambda a_{n}\right]}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty) \tag{22}
\end{equation*}
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$, and λ is a positive r.v. having a discrete distribution, then

$$
Y_{N_{n}}=S_{N_{n}} / s_{N_{n}} \Rightarrow \mu(\text { mixing }) \quad(n \rightarrow \infty)
$$

The proof of Theorem 5 bases on Theorem 4 and the following lemmas:
Lemma 4. If $\left\{X_{n}, \mathscr{F}_{n}, n \geqslant 1\right\}$ is an MDS satisfying (20) and (21), then $Y_{n} \Rightarrow \mu$ (mixing), $n \rightarrow \infty$.

Lemma 5 [8]. Let $\left\{k_{n}, n \geqslant 1\right\}$ and $\left\{m_{n}, n \geqslant 1\right\}$ be sequences of positive integers tending to infinity, and let $A_{n} \in \mathfrak{M}_{k_{n}}^{m_{n}}(n \geqslant 1)$. Then, for any event A,

$$
\limsup _{n \rightarrow \infty} P\left(A_{n} \mid A\right)=\limsup _{n \rightarrow \infty} P\left(A_{n}\right)
$$

where we set $P\left(A_{n} \mid A\right)=P\left(A_{n}\right)$ if $P(A)=0$.
Lemma 6. Let $\left\{X_{n}, \mathscr{F}_{n}, n \geqslant 1\right\}$ be an MDS satisfying (20) and (21). If λ is a positive r.v. having a discrete distribution, then

$$
\begin{equation*}
Y_{[\lambda n]} \Rightarrow \mu(\text { mixing }) \quad(n \rightarrow \infty) \tag{23}
\end{equation*}
$$

Lemma 7. Let $\left\{X_{n}, \mathscr{F}_{n}, n \geqslant 1\right\}$ be an MDS satisfying (20) and (21). If λ is a positive r.v. having a discrete distribution, then the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies $\left(\mathrm{A}^{* *}\right)$ with the norming sequence $\left\{s_{n}, n \geqslant 1\right\}$ and filtering sequence $\{[\lambda n], n \geqslant 1\}$.

Proof of Lemma 4. Let $A_{0}=\Omega, A_{n}=\left[Y_{n}<x\right](n \geqslant 1)$. By Theorem 2 of [9] it is enough to prove that, for any A_{k},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(A_{n} \mid A_{k}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) \tag{24}
\end{equation*}
$$

Let $\left\{r_{n}, n \geqslant 1\right\}$ be a sequence of positive integers such that $s_{r_{n}}^{2} \rightarrow \infty$ $(n \rightarrow \infty)$ and $s_{r_{n}}^{2} / s_{n}^{2} \rightarrow 0(n \rightarrow \infty)$.

For every $k \geqslant 1$ we put $r_{n}^{k}=\max \left(r_{n}-k, 0\right), n \geqslant 1$. Of course,

$$
s_{r}^{2}+k / s_{n}^{2} \rightarrow 0(n \rightarrow \infty) \quad \text { for every } k \geqslant 1
$$

and then, by the Kolmogorov inequality, we have

$$
P\left[\left|S_{r_{n}^{k+k}}\right| \geqslant \varepsilon S_{n}\right] \rightarrow 0(n \rightarrow \infty) \quad \text { for every } \varepsilon>0, k \geqslant 1
$$

Therefore, for every $k \geqslant 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(A_{n} \mid A_{k}\right)=\lim _{n \rightarrow \infty} P\left[\left(S_{n}-S_{r_{n}^{k+k}}\right) / s_{n}<x \mid A_{k}\right] \tag{25}
\end{equation*}
$$

Note that

$$
\left[\left(S_{n}-S_{r_{n}^{k+k}}\right) / s_{n}<x\right] \in \mathfrak{M}_{r_{n}^{k+k+1}}^{\infty} \quad \text { for all } n \geqslant k,
$$

and $A_{k} \in \mathcal{M}_{1}^{k}(k \geqslant 1)$. Hence, by the φ-mixing condition (20), for every $k \geqslant 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[\left(S_{n}-S_{r_{n}^{k+k}}\right) / s_{n}<x \mid A_{k}\right]=\lim _{n \rightarrow \infty} P\left[\left(S_{n}-S_{r_{n}^{k+k}}\right) / s_{n}<x\right] \tag{26}
\end{equation*}
$$

since $r_{n}^{k} \rightarrow \infty(n \rightarrow \infty)$ for every $k \geqslant 1$. Again, since

$$
S_{r_{n}^{k+k}} / s_{n} \xrightarrow{P} 0 \quad(n \rightarrow \infty),
$$

we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[\left(S_{n}-S_{r_{n}^{k+k}}\right) / s_{n}<x\right]=\lim _{n \rightarrow \infty} P\left(A_{n}\right) . \tag{27}
\end{equation*}
$$

Combining (25), (26) and (27), we obtain (24). The proof of Lemma 4 is completed.

Proof of Lemma 6. Let $l_{j}(j \geqslant 1)$ denote the values taken on by the r.v. λ with positive probabilities and let $\Omega_{j}=\left[\lambda=l_{j}\right](j \geqslant 1)$. Then

$$
P\left[Y_{[\lambda n]}<x\right]=\sum_{j=1}^{\infty} P\left[Y_{\left[j_{j} n\right]}<x \mid \Omega_{j}\right] P\left(\Omega_{j}\right)
$$

and, by (20), Lemma 4 and Theorem 1 of [9], we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P & {\left[Y_{[\lambda n]}<x\right]=\sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \lim _{n \rightarrow \infty} P\left[Y_{\left[l_{j} n\right]}<x \mid \Omega_{j}\right] } \\
& =\sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \lim _{n \rightarrow \infty} P\left[Y_{n}<x \mid \Omega_{j}\right]=\sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \lim _{n \rightarrow \infty} P\left[Y_{n}<x\right]=F(x)
\end{aligned}
$$

for every continuity point x of F, where $F(\cdot)=\mu\{(-\infty, \cdot)\}$, which proves that $Y_{[\lambda n]} \Rightarrow \mu(n \rightarrow \infty)$.

Let $A_{0}^{(i)}=\Omega_{j}, A_{n}^{(j)}=\left[Y_{[j, n]}<x ; \Omega_{j}\right](n \geqslant 1)$ for every $j \geqslant 1$. It is easy to see that the sequence $\left\{A_{n}^{(j)}, n \geqslant 0\right\}$ is a mixing sequence of sets in the space ($\Omega_{j}, \mathscr{A}_{j}, P_{j}$), where

$$
\mathscr{A}_{j}=\left\{A \in \mathscr{F}: A \subset \Omega_{j}\right\}, \quad P_{j}(A)=P\left(A \mid \Omega_{j}\right) \quad \text { for } A \in \mathscr{A}_{j} .
$$

Indeed, for every fixed $k \geqslant 1$ we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P_{j}\left(A_{n}^{(i)} \mid A_{k}^{(i)}\right)= & \lim _{n \rightarrow \infty} P_{j}\left(A_{n}^{(i)} A_{k}^{(i)}\right) / P_{j}\left(A_{k}^{(j)}\right) \\
& =\lim _{n \rightarrow \infty} P\left[Y_{\left[I, n^{\prime}\right]}<x \mid A_{k}^{(i)} \Omega_{j}\right] P\left(A_{k}^{(i)} \Omega_{j}\right) / P\left(\Omega_{j}\right) P_{j}\left(A_{k}^{(j)}\right)
\end{aligned}
$$

The last expression is, by Lemma 4, equal to

$$
\lim _{n \rightarrow \infty} P\left[Y_{[l j n]}<x \mid \Omega_{j}\right] P\left(A_{k}^{(j)} \mid \Omega_{j}\right) / \dot{P}_{j}\left(A_{k}^{(j)}\right)=\lim _{n \rightarrow \infty} P_{j}\left(A_{n}^{(j)}\right),
$$

where

$$
\lim _{n \rightarrow \infty} P_{j}\left(A_{n}^{(n)}\right)=\lim _{n \rightarrow \infty} P\left[Y_{n}<x \mid \Omega_{j}\right]=\lim _{n \rightarrow \infty} P\left[Y_{n}<x\right]=F(x)
$$

for every continuity point x of $F, F(\cdot)=\mu\{(-\infty, \cdot)\}$, which proves that $\left\{A_{n}^{(j)}, n \geqslant 1\right\}$ is a mixing sequence of sets on ($\Omega_{j}, \mathscr{A}_{j}, P_{j}$) with the local density $F(x)$.

Thus, for

$$
A_{n}=\left[Y_{[2 n]}<x\right]=\bigcup_{j=1}^{\infty} A_{n}^{(j)} \quad(n \geqslant 1)
$$

the sequence $\left\{A_{n}, n \geqslant 1\right\}$ is a mixing sequence of sets in (Ω, \mathscr{F}, P) [10]. Hence $Y_{[\lambda n]} \Rightarrow \mu$ (mixing), $n \rightarrow \infty$.

Proof of Lemma 7. For every $\varepsilon>0$ and for every $\delta>0$ we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} P\left[\max _{\left|s_{i}^{2}-s_{|2 n|}\right| \leqslant \delta_{[2 n]}^{2}}\left|Y_{i}-Y_{[\lambda n]}\right| \geqslant \varepsilon\right] \\
& \leqslant \limsup _{n \rightarrow \infty} P\left[\max _{\left|s_{i}^{2}-s_{[\lambda n]}^{2}\right| \leqslant \delta s_{[\mid n]}^{2}} \mid S_{i}-S_{[2 n \mid]} \geqslant \varepsilon \sqrt{1-\delta} s_{[n n]} / 2\right]+ \\
& \\
& \quad+\limsup _{n \rightarrow \infty} P\left[\mid Y_{[\lambda n]} \geqslant \varepsilon \sqrt{1-\delta / 2 \delta]},\right.
\end{aligned}
$$

where

$$
\limsup _{n \rightarrow \infty} P\left[\left|Y_{[\lambda, n]}\right| \geqslant \varepsilon \sqrt{1-\delta} / 2 \delta\right]=\mu\{x:|x| \geqslant \varepsilon \sqrt{1-\delta} / 2 \delta\} \rightarrow 0 \quad(\delta \rightarrow 0) .
$$

Thus, the sequence $Y_{n}=S_{n} / s_{n}(n \geqslant 1)$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{s_{n}, n \geqslant 1\right\}$ and filtering sequence $\{[\lambda n], n \geqslant 1\}$ if, for every $\varepsilon>0$,

$$
\begin{equation*}
\lim _{\delta \rightarrow \infty} \limsup _{n \rightarrow \infty} P\left[\max _{\left|s_{i}^{2}-s_{[\lambda n]}^{2}\right| \leqslant \delta s_{[\lambda n]}^{2}}\left|S_{i}-S_{[\lambda n]}\right| \geqslant \varepsilon \sqrt{1-\delta} s_{[\lambda n]} / 2\right]=0 . \tag{28}
\end{equation*}
$$

Let $\Omega_{j}=\left[\lambda=l_{j}\right](j \geqslant 1)$. Then, by Lemma 5, the left - hand side of (28) is equal to

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \limsup _{n \rightarrow \infty} P\left[\max _{T_{n, \delta}^{1} \leqslant i \leqslant T_{n, \delta}^{2}}\left|S_{i}-S_{\left[l_{j}\right]}\right| \geqslant \varepsilon \sqrt{1-\delta} S_{\left[j_{j}\right]} / 2 \mid \Omega_{j}\right] \\
& \quad=\lim _{\delta \rightarrow 0} \sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \limsup _{n \rightarrow \infty} P\left[\max _{T_{n, \delta}^{1} \leqslant i \leqslant T_{n, \delta}^{2}}\left|S_{i}-S_{\left[l_{j}\right]}\right| \geqslant \varepsilon \sqrt{1-\delta} s_{\left[j_{j} n\right]} / 2\right],
\end{aligned}
$$

where

$$
T_{n, \delta}^{1}=\min \left\{i:(1-\delta) s_{\left[l_{j} n\right]}^{2} \leqslant s_{i}^{2}\right\}, \quad T_{n, \delta}^{2}=\max \left\{i: s_{i}^{2} \leqslant(1+\delta) s_{\left[l_{j}\right]}^{2}\right\} .
$$

Furthermore, the last expression is less than or equal to

$$
2 \lim _{\delta \rightarrow 0} \sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \limsup _{n \rightarrow \infty} P\left[\max _{T_{n, \delta}^{1} \leqslant i \leqslant T_{n, \delta}^{2}}\left|S_{i}-S_{T_{n, \delta}^{1}}\right| \geqslant \varepsilon \sqrt{1-\delta} s_{\left[l j^{n}\right]} / 4\right],
$$

which; by the Kolmogorov inequality for martingales, is less than or equal to

$$
\begin{aligned}
32 \lim _{\delta \rightarrow 0} & \sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \limsup _{n \rightarrow \infty} E\left(S_{T_{n, \delta}^{2}}-S_{T_{n, \delta}^{1}}\right)^{2} / \varepsilon^{2}(1-\delta) s_{\left[l_{j n]}\right.}^{2} \\
& \leqslant 32 \lim _{\delta \rightarrow 0} \sum_{j=1}^{\infty} P\left(\Omega_{j}\right) \limsup _{n \rightarrow \infty}\left\{(1+\delta) s_{\left[l_{j n]}^{2}\right.}^{2}-(1-\delta) s_{\left[l_{j n} n\right]}^{2}\right] \varepsilon^{2}(1-\delta) s_{\left[l j_{n}\right]}^{2} \\
& \leqslant \lim _{\delta \rightarrow 0} 64 \delta / \varepsilon^{2}(1-\delta)=0 .
\end{aligned}
$$

The proof of Lemma 7 is completed.
Proof of Theorem 5. By (23) and Lemma 7 we have $Y_{[\lambda n]} \Rightarrow \mu$ (mixing) $(n \rightarrow \infty)$ and the sequence $\left\{Y_{n}, n \geqslant 1\right\}$ satisfies ($\mathrm{A}^{* *}$) with the norming sequence $\left\{s_{n}, n \geqslant 1\right\}$ and filtering sequence $\{[\lambda n], n \geqslant 1\}$. Thus, by Theorem 4, we obtain $Y_{N_{n}} \Rightarrow \mu$ (mixing) $(n \rightarrow \infty)$ for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying (22), which is the statement of Theorem 5.

Now we give simple consequences of Theorem 5 which extend or strengthen results given in [6] and [8].

Corollary 4 (cf. [8], Theorem 1). Let $\left\{X_{n}, n \geqslant 1\right\}$ be a strictly stationa$r y$ and ergodic sequence of r.vs. Assume that $E X_{1}=0, E\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$ $=0$ a.s. $(n \geqslant 1)$ and $E X_{1}^{2}=1$. If $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer valued r.vs. such that $N_{n} / a_{n} \xrightarrow{P} \lambda(n \rightarrow \infty)$, where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$, and λ is a positive r.v. having a discrete distribution, then $S_{N_{n}} / \sqrt{N_{n}} \Rightarrow \mathcal{N}_{0,1}$ (mixing) $(n \rightarrow \infty)$.

Corollary 5 (cf. [6], Theorem 4 and Remark on p. 209). Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent r.vs. with $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}<\infty(n \geqslant 1)$. Suppose that $S_{n} / s_{n} \Rightarrow \mu(n \rightarrow \infty)$, where

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad s_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2} \quad(n \geqslant 1) .
$$

If $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued r.vs. satisfying (22), then $S_{N_{n}} / s_{N_{n}} \Rightarrow \mu$ (mixing) $(n \rightarrow \infty)$.

Corollary 6. Let $\left\{X_{n}, \mathscr{F}_{n}, n \geqslant 1\right\}$ be an MDS satisfying (20). Suppose that

$$
V_{n}^{2} / s_{n}^{2} \xrightarrow{P} 1 \quad(n \rightarrow \infty)
$$

and, for every $\varepsilon>0$,

$$
s_{n}^{-2} \sum_{k=1}^{n} E\left(X_{k}^{2} I\left(\left|X_{k}\right| \geqslant \varepsilon s_{n}\right) \mid \mathscr{F}_{n-1}\right) \xrightarrow{P} 0 \quad(n \rightarrow \infty) .
$$

If $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued r.vs. satisfying (22), then $S_{N_{n}} / s_{N_{n}} \Rightarrow \mathcal{N}_{0,1}$ (mixing) $(n \rightarrow \infty)$.

The following result generalizes Theorem 4 of [6]:
Theorem 6. Let $\left\{X_{n}, \mathscr{F}_{n}, n \geqslant 1\right\}$ be an MDS satisfying (20) and (21). If $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued r.vs. such that

$$
\begin{equation*}
s_{N_{n}}^{2} / s_{a_{n}}^{2} \xrightarrow{P} \lambda \quad(n \rightarrow \infty), \tag{29}
\end{equation*}
$$

where $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive integers with $a_{n} \rightarrow \infty(n \rightarrow \infty)$ and λ is a positive r.v. $(P[0<\lambda<\infty]=1)$ such that, for any given $\varepsilon>0$,

$$
\begin{equation*}
\lim _{0 \leqslant c \rightarrow 0} \limsup _{n \rightarrow \infty} P\left[\left|\frac{S_{[(\lambda \pm c) n]}^{2}}{s_{n}^{2}}-\lambda\right| \geqslant \varepsilon\right]=0, \tag{30}
\end{equation*}
$$

then

$$
S_{N_{n}} / s_{N_{n}} \Rightarrow \mu(\text { mixing }) \quad(n \rightarrow \infty) .
$$

Proof. Only some modifications are necessary in the proof of Theorem 4 from [6] to make it applicable in this case.

In the particular case, from Theorem 6 we get a result stronger than that of Theorem 4 in [6]:

Corollary 7. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent r.vs. with $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}<\infty(n \geqslant 1)$. Suppose that $S_{n} / s_{n} \Rightarrow \mu(n \rightarrow \infty)$, where

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad s_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2} \quad(n \geqslant 1)
$$

If $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer - valued r.vs. satisfying (29) and (30), then $S_{N_{n}} / s_{N_{n}} \Rightarrow \mu$ (mixing) ($n \rightarrow \infty$).

REFERENCES

[1] D. J. Aldous, Weak convergence of randomly indexed sequences of random variables, Math. Proc. Cambridge Phil. Soc. 83 (1978), p. 117-126.
[2] F. J. Anscombe, Large-sample theory of sequential estimation, Proc. Cambridge Phil. Soc. 48 (1952), p. 600-607.
[3] P. Billingsley, Convergence of probability measures, John Wiley, New York 1968.
[4] M. Csörgö and Z. Rychlik, Weak convergence of sequences of random elements with random indices, Math. Proc. Cambridge Phil. Soc. 88 (1980), p. 171-174.
[5] R. T. Durrett and S. I. Resnick, Weak convergence with random indices, Stochastic Processes Appl. 5 (1977), p. 213-220.
[6] K. S. Kubacki and D. Szynal, Weak convergence of randomly indexed sequences of random variables, Bull. Pol. Acad. Sci. 32 (1958), p. 201-210.
[7] M. Loève, Probability Theory, Van Nostrand, Princeton 1960.
[8] B. L. S. Prakasa Rao, Random central limit theorems for martingales, Acta Math. Acad. Sci. Hungar. 20 (1969), p. 217-222.
[9] A. Rényi, On mixing sequences of sets, ibidem 9 (1958), p. 215-228.
[10] - On stable sequences of events, Sankhyā, Series A, 25 (1963), p. 293-302.
[11] - Probability theory, Akadémiai Kiadó, Budapest 1970.
[12] Z. Rychlik, Martingale random central limit theorems, Acta Math. Acad. Sci. Hungar. 34 (1979), p. 129-139.
[13] - Asymptotic distributions of randomly indexed sequences of random variables, Dissertation, Maria Curie-Skłodowska University, Lublin 1980 (in Polish).

Institute of Applied Mathematics Agricultural Academy in Lublin ul. Akademicka 13, 20-934 Lublin Poland

Institute of Mathematics, UMCS
ul. Nowotki 10, 20-031 Lublin
Poland

Received on 17. 12. 1984

