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Abstract. The papex deals with the concept of robustness given 
by Zielidski (see [17J and [18]). The uniformly most bias-robust 
estimates of the scale parameter, based on order statistics and 
spacings, for some statistical models are obtained. Violation or these 
modeis are generated by ordering relations in the set of distributions 
like stochastic ordering, dispersive ordering, convex and star-shaped 
orderings and others. 

Throughout the paper we identify probability distributions with its 
distribution functions and assume that all considered distributions are 
continuous and strictly increasing on their supports which will be intervals. 
We also assume that all expectations being considered exist and are finite. 

Let random variables X  and Y  have the distributions F and G with the 
supports SF and S,, respectively. Denote by XI ,,, X2:n ,  . .., X,:, and 
Y1:,,  Y2:,, ..., K z n  order statistics of samples from the distributions F and G. 
Define X,,, = inf { x :  F (x)  > 0) and Yo:, = inf {x: G ( x )  > 0) if they are 
finite. The random variables E:, = XiZA - X i -  and Ui :A = K z n  - x- :, are 
called spacings from the distributions F and G, respectively. We recall some 
partial orderings of distributions which will be used in the sequel. 

1.1. Stwhastic ordering. We say that F is stochastically less than G 
(F G) if and only if F (x) 2 G (x) for every x. We shall also use the notation 
X Y if and only if F G.  It is well known that if X I: then Xi:, C x:, 
and hence EX,,,  6 E x : , ,  i = 1, 2 ,  . . . , n. 

1.2. Dispersive ordering. Distributions F and G are said to be ordered 
in dispersion ( F ~ G )  if and only if ~ - ' ( f l ) - F - ' ( a ) <  G - l ( B ) - ~ ' l ( a )  
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whenever 0 < a < < 1. We shall also use the notation xd-? Y if and only 

if F d-? G .  
Many authors have studied properties of this ordering, e.g. Saunders and 

Moran [14], Lewis and Thompson [Ill, Shaked [IS]. Deshpande and Kochar 
[6]  have noticed that this ordering is the same as tail-ordering, introduced by 
Doksum [7]. Bickel and Eehmann [5] have called this relation "G is more spread 
out than F". Shaked 1151 has proved that under the above general assumptions 

on F and G, F '? D if and only if the so-called shift function A (x) = G- F (r) - x 

(see [S] and [12]) is nondecreasing for XES*. Hence it follows that if 

Xd-?L then x , , . ~ ? X : . ,  i = 1, 2, ..., n. One can also prove that if 
F and G are symmetric about the origin, i.e. F(x) = 1 - F ( - x )  for all x 

(for G analogously), then X '2 Y implies 1x1 '2 I YI. The following other 
properties of the'dispersive ordering will be applied in next sections. 

LEMMA 1 (Shaked [15]). Let SF = [0, a,] and SG = 10, a,], a, g a, 

< m. ~f F ~ ? G ,  then F h ~ .  
LEMMA 2 (Qja [12]). Let SF = [0, a,] and S, = [0, aG], a~ < a, 

disp 
ca,<co. If F < G, then ? $ , , 2 U i , , ,  i =  1,2 ,  ..., n. 

LEMMA 3 (Bickel and Lehmann [5]). kt F and G have the densities f and 

g, respectively. 7hen F G $ and only if gG-L (u) < f F -  ' (u), u e(0, 1) 

I 

1.3. Convex and star-shaped orderings. Let F (0) = 0 = G (0). Van Zwet 
[20] bas introduced the convex ordering relation: F is convex with respect to 
G (F.2 G )  if and only if G- 'F  is convex on SF. Barlow and Proschan [I] 
have considered the weaker relation: F is star-shaped with respect to G 
( F  3 G) if and only if G T I F  is star-shaped on SF, i.e. G-'F(x)/x is 
nondecreasing in x G SF. It is easy to see that F 2 G implies F 2 G. These 
relations are partial orderings of the scale equivalent classes of distributions. 
The following properties of the convex and star-shaped orderings will be 
used in the sequel. 

LEMMA 4 (Barlow and Proschan [I]). If F k G, then EXi,JEF:, is 
nonincreasing in i = 1 ;  2, . . . , n. 

LEMMA 5 (van Zwet 1211). If F -? G, then EF:JEUi: ,  is nonincreasing 
in i = l , 2  ,..., n. 

LEMMA 6 (Sathe [13]). If F 2 G and F -? G, then F ~ ? G .  
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LEMMA 7 (Le6n and Lynch [lo]).  k t  G have a density g on [0, aG], 
a, < oo, which is positive and continuotlsly di$erentiabEe on (0, %). Then the 
class of continuous distributions { F :  G 2 F )  is closed under mixtures and 
only i f  ug' (u)/g (u) is decreasing on (0, aG) . 

1.4. s-mderimg a d  r-ordering. The analogues of convex and star-shaped 
orderings for symmetric distributions have been studied by van Zwet [203, 
Doksum 171 and Lawrance [9]. Assume that F and G are symmetric about 
the origin. We say that F and G are ordered with respect to the s-ordering 
( F  2 G) if and only if G-I  F is convex on SF n [O, a) and concave on 
SF n (- im, 01. We say that F and G are ordered with respect to the r- 
ordering (F 2 G) if and only if G - ' F  is star-shaped on S,n [O, co) and 
-G-I F is star-shaped on S,n(-a, 01. It is easy to notice that F 2 G 
implies F 2 G. These relations are partial orderings of the scale equivaIent 
classes of symmetric distributions. The following lemmas give properties of 
these orderings which will be needed in next sections. The first of them is 
obvious, 

LEMMA 8. Let F and G be symmetric about the brigin and let F('' denote 
the distribution of JXIa, a 2 1, for G [ ~ '  analogously. 7hen: (i) F -? G implies 
F(") 2 G'"); (ii) F -=? G implies Pa) 2 G("'. 

LEMMA 9. I f  F 2 G, then E IXi,,(/E I %:,I is nondecreasing in i for 
i < (n+ 1)/2 and nonincreasing in i for i 2 (n+ 1)/2. 

The proof of Lemma 9 is quite similar to the proof of Theorem 4.6 
in E91. 

After simple modifications of Lemma 7 we obtain the following result: 
LEMMA 10. Let G be symmetric about the origin and have a density g on 

[ - c,, c,], cG d a, which is positive and continuously differentiable on 
( -c,, c,). i%en the class of continuous and symmetric about the origin 
distributions { F :  G 2 F )  is closed under mixtures if and only if ugJ(u)/g(u) is 
decreasing on (0 ,  cG) (and hence increasing on ( - CG, 0)). 

An interesting fact noticed by Oja [12] is that all above-mentioned 
orderings may be characterized by the convexity properties of the shift 
function A. It is obvious that if X has the distribution F, then X+ A ( X )  is 
distributed according to 6. 

2 ROBUST ESTIMATION OF TNE SCALE PARAMETER 
FOR DISTRIBUTIONS ON R+ 

21. Estimates based om order statistics. Let CAI.) = G(./A), R > 0, be a 
specified continuous distribution with the scale parameter A, having the 
support S,, = [a,, bA],  0 < an < bn < m, and G(0) = 0. We are interested in 
an unbiased estimation of A based on a sample of size n. The appropriate 



statistical model is 

M, = {R+ , B ,  , (G,, 1, > 01)". 

Suppose that the original model M, is violated in such a way that in 
fact the underlying random variables are distributed according to F ,  ( 4 )  

= F(4d) from a set of distributions n,,,(E.) satisfying the following 
conditions: 

(i) H, 2 F A  K, for every Fa EII~,# (A), where H ,  and K, are fixed 
continuous distributio~ls with the scale parameter /t and H ( 0 )  = 0 = K ( 0 ) ;  

(ii) HA E nH.K ( A ) ,  # A  E nH.K (A)  ; 
(iii) D,., (A') n [G,, A > 0) = {G,. j for every 2' > 0. 
The set n,,,(A) wili be called a uiokrtion of Mo {see [I71 and [18]) 

generated by stochastic ordering. 
Let T be an unbiased estimate or L in the model M o b  Let FA run 

through the set n,,(A) and let EF, T denole the expected value of T if 
the underlying distribution is F, (EF T if R = 1). Then 

~ T { A )  = sup (EFA T-A)- inf (EFA T-A) 
FA ~ f l ~ , ~ I d l  F , I ~ ~ H , K ( ~ )  

is the oscillation of the bias of T over naa(A) and gives us a measure of 
robustness of the estimate Twith respwt to its bias under the violation 17,,K. 
The function 1 + hT(A), A > 0, is called the bias-robustness of T(see [17] and 
f 181). 

The problem is to find T, such that 

(1) b )  b (A) for every A > 0 

and every Tin a given class of statistics. The estimate for which (1) holds, 
is called the uniformly most bins-robust estimate (UMBRE) of 1 in the given 
class of statistics. 

For our problem of estimation consider the class of statistics 

i.e. the class of all nonnegative linear combinations of order statistics which 
are unbiased estimates of 1 in M,. Notice that if T E  F+, then bT(;l) = Lb,(l) 
and the problem of finding the UMBRE of A in 9' reduces to that of 
finding TO which minimizes b T ( f )  in Ti. We can state the following 
theorem: 

THEOREM 1 .  Under the violation n,,, of the madel M,: 
(i) i f H  -? G 2 K,  then XI ,JEG XI :, is the UMBRE of A in the class F+; 
(ii) i f K  9: G f: H, then Xn,JEG X,:, is the UMBRE of A in the class Ff. 
Proof. The idea of the proof is $he same as in [19j (see also [4]). 

From the properties of the stochastic ordering it fot~ows that if F E ~ , , , ,  



then EH Xita < EF Xi:" < EK Xi:n, i = 1, 2, . . . , n. Hence for every TE F+ we 
have 

n n 

sup 6, T(a )  = al EK X i : ,  and inf EF T(E)  = ui ER Xi:.. 
F E ~ H , #  i =  1 F E n ~ . ~  i =  1 

The problem of finding T, reduces to that of finding a, 2 0, 
n 

i = 1 ,  2, . . . , n, which minimize ui (EK Xi:m - EH Xi:,,) under the condition 
i= 1 

of T, being unbiased in Mo, i.e. 

This is a simple linear programming problem with a single constraint, 
the solution is therefore (a, ,  or2,  . .., or,) with exactly one nonzero coordinate. 
Hence To = Xi , , /E ,  Xi where i* minimizes ( E ,  X i  ,, - EH Xi ,,)/EG Xi:,,. 
From Lemma 4 it follows that if H -% G 2 K, then i* = 1, and if 
K -? G 2 H, then i' = n. 

Example 1. Exponential model. k t  G,(x) = 1 -e-"/', x 3 O, it > 0. The 
relation H 2 G 2 K is equivalent to that H is an IFRA distribution and K is 
a DFRA distribution. Some families of distributions regarded as violations of 
the exponential model have been considered by Zielinski [19], Bartoszewicz 
[2] and Bartoszewicz and Zielinski [4]. Among them two parametric families 
have some particular inte~est: 

where G , ,  is the exponential power distribution with the density function 

and 

(3) P ( A ;  pl, pz) = (Gf,,: PI G P ~ 2 1 ,  

where G:,, is the gamma distribution with the density function 

Under the violation (2) the UMBRE of A in F+ is nX,:, and under the 
violation (3) the UMBRE of 2 in .F+ is X,:,/(I + 1/2+. . .+ l/n). 

E xampIe 2. UniJorm model. Let Gl, (x) = x/)l., 0 < x < A. If a distribu- 
tion H has an increasing density, then H 2 G and hence H 2 G;  similarly, if 
K has a decreasing density, then G 2 K and hence G 2 K. As a violation of 
the uniform model generated by stochastic ordering consider the parametric 
family of distributions 
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where P(p, 1) is the beta distribution with the density pxp-I, 0 < x d 1, and 
0 < p ,  d 1 < pz < a. Evidently, fi, (1, I) = G,. It is easy to see that for each 
A > 0 the family of distributions (4) is stochastically increasing in p, i.e. 
B n  (P, 1) 2 B;? (P', 1) for P < P' and also B (P, ,  1) f: 81131) 2 B ( P ~  9 1). Hence 
( n +  1) X,:,/n is the UMBRE of A in the class F+ under violation (4). It is 
well known that (n+ 1) X,,Jn is the uniformly minimum variance unbiased 
estimate (UMVUE) of 1 in the original uniform model. 

Similarly one can easily obtain that tbis estimate is also the UMBRE 
of a in F" under the violation {fi ,  (1, q): q ,  6 q < q 2 ) ,  where 811, q) 
is the beta distribution with the density q(1- x ) ~ -  ', 0 < x < 1, and 
O < q ,  G 1 < q a < o O .  

Define now the following set of distributions: 

where Fa,, has the density 

[ & ( l f ~ ) - ~ ~ / I f ( l - E ) / ( 1 f E ) ] / ~  i f O < X < ( l + & ) I ,  . , 

otherwise, 

and t ,  are fixed numbers from (0, 1). Of course, FA,, = G,.  It is not 
difficult to show that if - 5  < c < E' < q, then F, ,  FA,,, and also Fa,, 2 Fa,,, 
for each 3, > 0. Thus the set (5) is a violation generated by stochastic 

I ordering with H ,  = FA,-< and K ,  = F,,, and Theorem 1 implies that 
( n +  1) XI :, is the UMBRE of d in Yf . 

Consider another violation of the uniform model 

where F:,, has the density 

[ ~ E ( ~ + E ) - ~ X / ~ , + ( ~ - E ) / ( ~ + E ) ] / ~  i fO<X<( l+&)A,  
&!XI = {, otherwise, 

and 5, q are fixed numbers from (0, 1). If -5 6 E < E '  6 q, then Ff , ,  
8 Fz,,, and F;,,, 2 FA,, . Hence it follows from Theorem 1 that (n + 1) X,,,/n 
is the UMBRE of I in F+ under the violation (6). 

Example  3. Pareto model. Let G,(x) = l-@/A)-: 0 < L < x < a, 
where r > 1 is known. Consider the following set of distributions: 

where y and 6 are positive fixed numbers and y < r- 1. It is easy to verify 
that if E < E', then F i  2 F D n d  also Fi 3 Fi for each R > 0. Hence the set 
(7) is a violation generated by stochastic ordering with H ,  = F: and K, 
= Fi .  Theorem 1 implies that the statistic (rn-I)X,:,/rn is the UMBRE 
of A in the class 9' under the violation (7). It is easily seen that this 
statistic is the UMVUE of A in the original Pareto model. 
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Example  4. Contaminated model. This example has a more general 
character than previous ones. Let G, be a distribution on {O,  c,] , c, < a, 
with continuously differentiable density g, such that ugf(u)/g (zc) is decreasing 
on (0, c). Let LA be a distribution with the scale parameter ;1 such that 
L, G ,  for each R > 0 and also G -? 1;. Consider the following set of 
distributions 

n(1,; E ~ )  = {G,,, = ( ~ - E ) G ~ + E L ~ ,  0 < E < s o ) ,  

where E ~ E ( O ,  1 )  is fixed. It is easy to verify that D(A; E ~ )  is a stochastically 
decreasing family of distributions, i.e. Gi G; for 0 < e c E' d 1 and every 
;i > 0 and hence n(A; c0) is a violation generated by stochastic ordering with 
HA = (1 - E ~ )  GI + E ,  LA and K, = G I .  From Lemma 7 it follows that G 2 
(1 - E ~ )  G + E ~  L. Hence Theorem 1 implies that X,, J E ,  X,, , is the UMBRE 
of R in the class Ff under the violation n(A; E ~ )  of the original model. The 
particular case of this example, when G, (x) = 1 - e-"l< x 3 0, and LA is the 
gamma distribution with a -fixed shape parameter p c 1, has been considered 
by Bartoszewicz [2]. 

2.2. Robust estimates based on spacings. Consider again the model M,. 
Now suppose that the model M, is violated in such a way that the 
underlying random variables have an unknown distribution F, (.) = F (-/A) 
from a set of distributions fi,,,(A) satisfying the following conditions: 

disp disp 
(i) H, < F ,  < K ,  for every F ,  ~l?i,,,(A) where HA and K ,  are fixed 

continuous distributions with the scale parameter ;1 and H(0) = 0 = K(0) ;  
(ii) HA E f i H . K  (A), K1 E ffH,K (4 ; 
(iii) ff,., (A') n {G,, R > 0) = (GI,)- for every 1.' > 0. 

The set n,,,(A) will be called a violation of Mo  generated b y  dispersive 
ordering. If SF_= [0, a,], SH = 10, a H ] ,  SK = [0 ,  4 and a, < a, < a, < rn 
for each  FED^,^, then from Lemma 1 it follows that n,,,(i) is also a 
violation generated by stochastic ordering. 

Consider the class of statistics 

where & : , = X i : , - X i - l : , ,  i = 1 , 2  ,..., n, Xo:,=inf{x: P , ( x ) > O } ,  are 
spacings. Thus Yf is the class of all nonnegative linear combinations of 
spacings which are unbiased estimates of A in the model M,. It is easy to see 
that 9' c Y*. Notice that if SE Y+, then b,(L) = & , ( I ) ,  where b,lA) is the 
bias-robustness of S defined similarly as previously. Thus the problem of 
finding the UMBRE of J. in the class 9' reduces to minimizing b,(l) in .Yf. 

Similar to Theorem 1, from Lemmas 2 and 5 we have the following 
t heoxem : 
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I'HEOREM 2. Under the violation nH,, of the model M,: 
(i) if H 2 G 2 K, rhrn VI :n/EG Vl : n  is the UMBRE oj' ;l in rhe cluss .Y" ; 
(ii) $ K 2 G 2 H, then V,: j E c  1.',:, is the UMBRE of d in 1121. clnss Yi. 

Example  5. Exponential model. Let GA(x) = Z - e k d A ,  x 2 0, > 0. The 
relation H 2 G 2 K means that H is an IFR distribution and K is a DFR 
distribution. Violations (2) and (35 satisfy the assumptions of Theorem 2 (see 
[3]) and hence, in the class Y' under the violation (21, n CI, ,, is the UMBRE 
of I. and, under the violation (3), K:,, is the LTMBRE of I.. 

E xampIe 6. Unqorrn mobel. Let G ,  be the uniform distribution on 
10, A]. Consider the violation (4) of the uniform model. Since for -4: < E 

< E~ < q we have FA,, FA,,, and F A ,  2 F,,gf, from Lemma 6 it follows that 
disg 

F , ,  < F,,*..  This can be also proved using   em ma 3. Thus the set (5) 
is a violation generated by dispersive ordering with M i  = FA,-{  and K, 
= F,,. Theorem 2 implies that (n+ l )  Q:, is the UMBRE of L in Yf', 

Consider now the violation (6) of the uniform model. It easily follows 
die 

from Lemma 3 that FA,, PF,,,. for - 5 < ~  < ~ ' < q + .  Since F ,,,, ; G ,  

2 F, , - , ,  from Theorem 2 we obtain that ( n f l )  K',:, is the UMBRE of 
;I in 9''. 

3. ROBUST ESTIM4TES OF THE SCALE PARAMETER 
FOR SYMMETRIC DISTRIBmIQNS 

Consider the statistical model M, = ( R , B ,  !G,, I > O;)", where G,(-)  
= G(./R) is a continuous and symmetric about the origin distribution on the 
support S, = [-c,, c,], c:, ,< co. As a vioktion of M ,  consider a set n,.,(;l) 
of symmetric about the origin distributions with the scale parameter 1 
satisfying the following conditions: 

ti) H, {x) 2 F A  (x) 2 K, (x) for every Fi ~li,,, (A)  and each x 2 0 
and L > 0 where Hi and K, are fixed continuous symmetric about the origin 
distributions with the scale parameter I ? ;  

(ii) H, E I I ~ . ~ ( A ) ,  K,rzL!,,(E.); 
(iii) n,., (A') n IG,, A > 0: = IG,, for every A' > 0. 

For the family of distributions [GAY i > 0; the vector (JX,:,J, IX,:,(, .. ., 
IX,,,O is a sufficient statistic (see [93). Define the class W+ of Iinear 
estimates of A, unbiased in the original model M, and based on the sufficient . 

statistic, such that 
n 

Y/ '* = {Wtr) = 1 uilXi:nJ, (al, u2,  . .., u,)ER:,  EGI Wr(u) = R, A > 01. 
i =  1 

The problem consists of finding the UMBRE of 1 in the class Y! '+ 



Bias-robust estimation 111 

under the violation nHF,. Similarly as previously, if WE W", then b,(A) 
= Rbw(l) and it suffices to find a Wo E Wf which minimizes I r ,  (1). 

Similar to Theorems 1 and 2, from Lemma 9 we have the following 
t heorern: 

THEOREM 3. Under the violation of the model no: 
(i) i;f H 2 G 2 K, then for arbitrary y E 10, 11 

if n is odd, 

(8) w, = 
1x42 + 1 :al ' i j  n is  even, 

E~ lXM2+ 1 :at 

is che UMBRE of d in the class W" ; 
(ii) if K 2 G 2 H, then for arbitrary y E [O, 13 

is the UMBRE of A in the class W'* .  
It is easy to notice that the vector (1x1, :,, IXI,:,, . . ., (X1,:J is also a 

sufficient statistic for the family (G,, 1 > 0). Consider the following class of 
linear estimates of A, unbiased in the original model Mo: 

I 

I Similarly, using Lemmas 4 and 8, one can prove the following result: , 

THEOREM 4. Under the violation nH,, of the model a,: 
(i) if H 2 G 2 K ,  then IXI,, JEG (XI,:, is the UMBRE of 1 in the class 

v"+ ; 
(ii) if K 2 G 2 H ,  then IXI,,JEG [XI,:, is the UMBRE of 3, in the class 

v+. I 

Consider now the model Mo and its vio1ationlfH,(A) generated by 
dispersive ordering, i.e. fIH, , (R)  satisfies conditions (i) and (ii) from the 

definition of l f H , K  (A)  and also it holds H, '? FA '? K, for every FA E 0,. 
It is easy to see that if SH c SF c SK for all ~ ~ f i ~ , , ,  then hH,K is also of the 
type n,,,. 

Define the class 3' of linear estimates of A, unbiased in the original 
model Ro, such that 

where IXI,:, = 0. Notice that 9'' c 6'. Since for symmetric about the 

2 - Prob. Matb Statist. 7 (2) 



origin distribution X '7 Y implies 1x1 YI, wing Lemmas 2, 5 and 8 one 
can easily prove the following result: 

THEOREM 5. Under the violation fig, of ihe &el M,: 
(i) if H 2 G 2 K, then 1x1, ,,JE, 1x1, :, is the UMBRE of 1 in the class 

3+: 
(ii) $ K . Z  G 2 66, t k n  (~X~,,,-~X(n-l,,)/EG(~XJ,,,-~X~n,l :,) is  the UM- 

BRE of 1 i r z  the class 2'. 
Ex ample 7. Contanziizated normal model. Let G, I.) = @(*/A), where 9 is 

the distributiorr function of the normal distribution N(O, I), and suppose 
that in fact the underlying random variables have a distribution F",rrom the 
set 

where so .= I is fixed. 
It. is easy to notice that the violation ~ ( R . ; E ~ )  is of the type R,,,(1) with 

HA = @(-/A) and K, = (1 -80)@(-/A)+~09(./3A). Since for the standard nor- 
mal density q we have utpl(u)f q(u) = - u2 and @(-) 2 @ (-/3), from Lemma 
10 it follows that 

Now from Theorem 3 we obtain that the statistic W*, being of the form 
(8) with G = @3 is the UMBRE of R in the class $4'"' under the violation 

(A; E,) of the normal model, 
From Theorem 4 it foIlows that the statistics VV* = ]XI, ,JE@IXI, :, is the 

UMBRE of IZ in the class V' under the violation ~(A;E,) of the normal 
model. 

Consider two classical unbiased estimators of the standard deviation d 
in the original normal model: 

i.e. the UMVUE of 1, and 

For the considered contaminated normal model Tukey [16j has studied 
the asymptotic relative efficiency of these estimators. Using our definition of 
bias-robustness one can easily check that under the violation n(l; E,) the 
bias-robustness of these estimates are the same, namely hsn(A) = 

= 2b,. However, notice that and also S,*E?^', SO the estimates 
W* and V* are more bias-robust than S, and S t  under the violation 
n(i,; E,). 
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