PROBABILITY AND MATHEMATICAL STATISTICS Vol. 7, Fasc. 1 (1986), p 77-93

NECESSARY AND SUFFICIENT CONDITIONS FOR EXTENDED CONVERGENCE OF SEMIMARTINGALES

LESZEK SŁOMIŃSKI (TORUŃ)

RY

Abstract. The extended convergence (in sense of Aldous [1]) of processes with filtrations is considered. There are examined the cases where the well-known conditions, sufficient for the weak convergence of semimartingales, are exactly equivalent to the extended convergence.

1. INTRODUCTION

Let S be a Polish space. In this paper we adapt the following notation: $\mathscr{B}(S)$ – the σ -algebra of Borel subsets of S;

 $\mathscr{P}(S)$ — the space of probability measures on $\mathscr{B}(S)$ equipped with the topology of weak convergence;

D(S) — the space of mappings $x: \mathbb{R}^+ \to S$ which are right-continuous and admit left-hand side limits (it is well known that D(S) endowed with the Skorokhod topology is metrisable as a Polish space, see [2]).

Definition 1. Let (Ω, F, P) be a probability space. The pair $(\mathscr{X}, \mathscr{F})$ is a process with filtration iff $\mathscr{X} = \{X(t)\}_{t \in \mathbb{R}^+}$ is a family of S-valued random elements defined on (Ω, F, P) and $\mathscr{F} = \{F(t)\}_{t \in \mathbb{R}^+}$ is a filtration in this space (i.e. nondecreasing family of sub- σ -algebras of F) such that:

(H₁) almost all trajectories $\omega \to (\mathscr{X}(\cdot, \omega): \mathbb{R}^+ \to S)$ belong to D(S);

(H₂) X(t) is F(t)-measurable, $t \in \mathbb{R}^+$;

(H₃) $F(t) = \bigcap F(u), t \in \mathbb{R}^+$.

Let Cont $\mathscr{X} \stackrel{\text{df}}{=} \{t \in \mathbb{R}^+ : P(X(t) \neq X(t-)) = 0\}.$

It has been proved by Aldous [1] that for every process with filtration $(\mathcal{X}, \mathcal{F})$ there exists a unique prediction process $(\mathcal{X}, \mathcal{F})$ with values in the

space $\mathscr{P}(D(S))$ such that, for every $t \in \mathbb{R}^+$ and every $A \in \mathscr{B}(D(S))$, Z(t)(A) $= P(\mathscr{X} \in A | F(t)).$

We define the extended distribution of the process $(\mathcal{X}, \mathcal{F})$ as the distribution of the random element

$$\Omega \ni \omega \to (\mathscr{X}(\cdot, \omega), \mathscr{Z}(\cdot, \omega)) \in D(S \times P(D(S))).$$

Definition 2 (Aldous [1]). Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n \in \mathbb{N} \cup \{\infty\}}$ be a sequence of processes with filtrations. We say that the sequence $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ converges extendly to $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ (and write $(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$) if the extended distributions of $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ are weakly convergent to the extended distribution of $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$.

It is possible to characterise the extended convergence by the weak convergence of some families of bounded martingales. Let $(\mathcal{X}, \mathcal{F})$ be a real process with filtration. For every $m \in N$, every $T = (t_1, \ldots, t_m) \in \mathbb{R}^m$, $t_1 < t_2$ $< \ldots < t_m, \ \Theta = (\theta_1, \ldots, \theta_m)$ we denote by $\mathscr{X}_{T, \Theta, m}$ the regular version of the martingale of the form

(1)
$$\left\{ E\left(\exp i\sum_{k=1}^{m}\theta_{k}X(t_{k})|F(t)\right)\right\}_{t\in\mathbb{R}^{+}}.$$

In Section 4 we shall prove the following

PROPOSITION 1. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}\cup\{\infty\}}$ be a sequence of real processes with filtrations, $X^n(0) = 0$, $n \in \mathbb{N} \cup \{\infty\}$. The sequence $\{(\mathcal{X}^n, \mathcal{F}^n)\}_{n \in \mathbb{N}}$ converges extendly to $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ iff two following conditions are satisfied:

(i) $(X_{T,\Theta^1,m}^n(t_1),\ldots,X_{T,\Theta^n,m}^n(t_m)) \xrightarrow{\sim} (X_{T,\Theta^1,m}^\infty(t_1),\ldots,X_{T,\Theta^n,m}^\infty(t_m));$ (ii) $\{(\mathscr{X}^n,\mathscr{X}_{T,\Theta^i,m}^n)\}_{n\in\mathbb{N}}$ is tight in $D(\mathbb{C}^2)$, $i=1,2,\ldots,m$, for every $m\in\mathbb{N}$, every $T \in [\text{Cont } \mathscr{X}^{\infty} \cap \text{Cont } \mathscr{X}^{\infty}]^m$, $\Theta^i \in \mathbb{R}^m$, i = 1, 2, ..., m.

Standard arguments show that in (i) and (ii) it is sufficient to consider only the countable number of conditions.

We can obtain the similar result for the S-valued processes with filtrations. In this case we use the new bounded martingales

(2)
$$\{E(f_m(X(t_1),...,X(t_m))|F(t))\}_{t\in\mathbb{R}^+}$$

instead of (1) for every $m \in N$, every $(t_1, \ldots, t_m) \in \mathbb{R}^m$ and bounded and continuous functions $f_m: S^m \to \mathbb{R}$.

In this paper we consider the extended convergence of real semimartingales to the continuous in probability process with independent increments. Jacod has observed in [9] that the convergence in probability of the local predictable characteristics of semimartingales is "essentially equivalent" to the extended convergence. In [12] we have proved that the sufficient conditions of convergence, discussed by Brown [3], Liptser and Shiryaev [16], Grigelionis and Mikulevicius [4] and Jacod, Klopotowski and

Memin [11], are in fact stronger that the extended convergence of semimartingales. Now we examine the cases where these conditions are exactly equivalent to the extended convergence.

As a consequence we generalise the well known results by Liptser and Shiryaev [16], [17] (Theorem 2, Section 2, and Theorem 4, Section 3) and Aldous [1] (Theorem 1, Section 2, and Theorem 3, Section 3).

Finally, let us add that similar problem was recently discussed by Grigelionis, Mikulevicius and Kubilius [6] (see also [14] and [13]). They characterise sufficient conditions of convergence using the finite-dimensional convergence of extended distributions. However, we hope that our method is simpler than that mentioned above.

2. MAIN RESULTS

Let (Ω, F, P) be a complete probability space and $(\mathscr{X}, \mathscr{F})$ be a semimartingale (relatively to P) such that X(0) = 0 and the filtration \mathscr{F} satisfies the completeness assumptions, i.e. F(0) contains all P-null sets of \mathscr{F} .

Let $h: \mathbb{R} \to [-1, 1]$ be a continuous function satisfying h(x) = x for $|x| \leq 1$ and h(x) = 0 for $|x| \geq 2$. Consider the process \mathscr{X}^h defined by

(4)
$$X^{h}(t) = X(t) - \sum_{s \leq t} \left(\Delta X(s) - h(\Delta X(s)) \right), \quad t \in \mathbb{R}^{+}.$$

The process with filtration $(\mathscr{X}^h, \mathscr{F})$ is a special semimartingale. It can be uniquely decomposed into the sum $\mathscr{X}^h = B^h + M$, where (B^h, \mathscr{F}) is a predictable process with bounded variation and (M, \mathscr{F}) is a locally square integrable martingale.

Let $(\mathscr{X}^r, \mathscr{F})$ be the unique continuous martingale part of the semimartingale $(\mathscr{X}, \mathscr{F})$. Define

(4)
$$\sigma^2(t) = \langle \mathscr{X}^c \rangle(t), \quad t \in \mathbb{R}^+.$$

Let $v = v(dt \times dx)$ be the dual predictable projection of the jumpmeasure $N(dt \times dx)$ of the process $(\mathcal{X}, \mathcal{F})$,

(5)
$$N((0, t] \times A) = \sum_{s \leq t, \Delta X(s) \neq 0} I(\Delta X(s) \in A), \quad A \in \mathscr{B}(\mathbf{R}).$$

We say that the triplet (B^h, σ^2, v) is a system of local predictable characteristics of the semimartingale $(\mathcal{X}, \mathcal{F})$.

Consider an array $\tau = \{t_{nk}\}$ of nonnegative numbers such that for each n the sequence $\{t_{nk}\}_{k \in \mathbb{N} \cup \{0\}}$ forms a partitions of \mathbb{R}^+ for which

(6)
$$0 = t_{n0} < t_{n1} < \dots, \qquad \lim_{k \to \infty} t_{nk} = +\infty,$$

and

(7)

$$\max_{k \leq r_n(t)} (t_{nk} - t_{n,k-1}) \to 0,$$

where $r_n(t) = \max[k: t_{nk} \leq t], t \in \mathbb{R}^+, n \in \mathbb{N}$.

- (+)

Now let $(\mathcal{Y}, \mathcal{F})$ be a process with filtration from the class $S_a(\tau)$ defined by Jacod [10], i.e. $\mathscr{Y} = \mathscr{X} + B$, where $(\mathscr{X}, \mathscr{F})$ is a semimartingale with the triplet of local predictable characteristics $(0, \sigma^2, v), v(\lbrace t \rbrace \times (\mathbb{R} \setminus \lbrace 0 \rbrace)) = 0$, $t \in \mathbb{R}^+$, X(0) = 0. The process with filtration $(B, \mathcal{F}), B(0) = 0$, has continuous trajectories and the following property:

(8)
$$\sup_{t \leq q} \left| \sum_{k=1}^{t_{n(t)}} E\left(h\left(B(t_{nk}) - B(t_{n,k-1})\right)F(t_{n,k-1})\right) - B(t) \right| \xrightarrow{P} 0, \quad q \in \mathbb{R}^+.$$

It is proved in [20] that for every process $(\mathcal{Y}, \mathcal{F}) \in S_a(\tau)$ there exists a unique triplet of local predictable characteristics (B, σ^2, v) .

Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of semimartingales. For every $(\mathscr{X}^n, \mathscr{F}^n)$ let us denote the system of local predictable characteristics by $(B^{h,n}, \sigma^{2,n}, v^n)$, $n \in \mathbb{N}$.

THEOREM 1. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of semimartingales. Let $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ belong to $S_q(\tau)$ and have the triplet of characteristics $(B^{\infty}, \sigma^{2,\infty}, v^{\infty})$. Assume that

(A)
$$((\mathscr{X}^n, B^{h,n}), \mathscr{F}^n) \to ((\mathscr{X}^\infty, B^\infty), \mathscr{F}^\infty).$$

If we write $M^{\infty} = \mathscr{X}^{h,\infty} - B^{\infty}$, then the following conditions are satisfied: (i) $(M^n, [M^n], \langle M^n \rangle) \xrightarrow{\sim} (M^\infty, [M^\infty], \langle M^\infty \rangle)$ in $D(\mathbb{R}^3)$;

(ii)
$$\left(\int_{O} \int_{R} f(x) N^{n}(ds \times dx), \int_{O} \int_{R} \int f(x) v^{n}(ds \times dx)\right)$$

$$\xrightarrow{g} \left(\int_{O} \int_{R} f(x) N^{\infty}(ds \times dx), \int_{O} \int_{R} f(x) v^{\infty}(ds \times dx)\right)$$

in $D(\mathbb{R}^2)$ for every $f \in C_{v(0)}$, where $C_{v(0)}$ is a family of bounded and continuous functions vanishing in an open neighbourhood of 0.

The proof of Theorem 1 is given in Section 4.

For the sake of brevity we will say that $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ satisfies (H_{∞}) iff $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ is continuous in probability process with independent increments.

THEOREM 2. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of semimartingales. Let the process $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ satisfy (\mathbf{H}_{∞}) and have the triplet of characteristics $(B^{\infty}, \sigma^{2,\infty}, v^{\infty})$. Suppose that

(Sup B)
$$\sup_{t \leq q} |B^{h,n}(t) - B^{\infty}(t)| \xrightarrow{P} 0, \quad q \in \mathbb{R}^+.$$

Then the following conditions (i) and (ii) are equivalent:

(i)
$$(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^\infty, \mathscr{F}^\infty);$$

Extended convergence of semimartingales

(M)
$$\sigma^{2,n}(t) + \sum_{s \leq t} \int_{\mathbb{R}} h^2(x) v^n(\{s\} \times dx) - \sum_{s \leq t} \left(\int_{\mathbb{R}} h(x) v^n(\{s\} \times dx) \right)^2$$

(ii)

(N)
$$\int_{0}^{t} \int_{\mathbf{R}} f(x) v^{n}(ds \times dx) \xrightarrow{t} \int_{0}^{t} \int_{\mathbf{R}} f(x) v^{\infty}(ds \times dx), \quad t \in \mathbf{R}^{+}, f \in C_{v(0)}$$

 $\to \sigma^{2,\infty}(t) + \sum_{s \leq t} \int_{\mathbf{R}} h^2(x) v^{\infty}(\{s\} \times dx), \quad t \in \mathbf{R}^+,$

Proof. (ii) \Rightarrow (i). This implication readily follows from Theorem 2 and Proposition 2 from [12].

(i) \Rightarrow (ii). First note that $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ belongs to $S_q(\tau)$. Because of equalities

$$\langle M^n \rangle(t) = \sigma^{2,n}(t) + \sum_{s \leq t} \int_{\mathbb{R}} h^2(x) v^n(\{s\} \times dx) - \sum_{s \leq t} \left(\int_{\mathbb{R}} h(x) v^n(\{s\} \times dx) \right)^2$$

and

$$\langle M^{\infty} \rangle(t) = \sigma^{2,\infty}(t) + \sum_{s \leq t} \int_{\mathbf{R}} h^2(x) v^{\infty}(\{s\} \times dx),$$

and, by Theorem 1, the conclusions follow.

Let (W, \mathscr{F}^W) be a standard Brownian motion (by $\mathscr{F}^{\mathscr{Y}}$ we denote the natural filtration of the process \mathscr{Y}). In [12] we have proved that under the condition (Sup B) there holds the equivalence: $\mathscr{X}^n \xrightarrow{\rightarrow} W$ iff $(\mathscr{X}^n, \mathscr{F}^n) \rightarrow (W, \mathscr{F}^W)$. Hence Theorem 2 is more general than the well-known result of Liptser and Shiryaev [16] on the necessary and sufficient conditions for the weak convergence of semimartingales to Brownian motion. We have also observed that the assumption (Sup B) is not necessary for the convergence $(\mathscr{X}^n, \mathscr{F}^n) \rightarrow (W, \mathscr{F}^W)$.

Now we will show that $(\operatorname{Sup} B)$ and the weak convergence $\mathscr{X}^n \to \mathscr{X}^{\infty}$, where $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ satisfies $(\operatorname{H}_{\infty})$, do not imply (ii).

Example. Let (N, \mathscr{F}^N) be a simple Poisson process. Suppose that $\{(\mathscr{X}^n, \mathscr{F}^{\mathscr{X}^n})\}_{n\in\mathbb{N}}$ is a sequence of processes defined by the equalities: $X^n(t) = 2N(t) + (1/n)N(2t), t \in \mathbb{R}^+, n \in \mathbb{N}$. Then condition (N) is not satisfied.

It is interesting that with the use of the concept of G-stable convergence, introduced by Grigelionis and Mikulevicius [5], it is possible to generalize slightly all results of our paper.

Definition 3 (Grigelionis and Mikulevicius [5]). Let G be a sub- σ -algebra of F. We say that the sequence of processes $\{(\mathscr{X}^n, \mathscr{Z}^n)\}_{n\in\mathbb{N}}$ converges G-stably to $(\mathscr{X}^{\infty}, \mathscr{Z}^{\infty})$ (and write $(\mathscr{X}^n, \mathscr{Z}^n) \to (\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ G-stably) if

$$\int_{A} f(\mathscr{X}^{n}, \mathscr{Z}^{n}) dP \to \int_{A} f(\mathscr{X}^{\infty}, \mathscr{Z}^{\infty}) dP$$

for every $A \in G$ and every continuous and bounded function $f: D(\mathbb{R} \times \mathscr{P}(D(\mathbb{R}))) \to \mathbb{R}$.

6 – Probability ...

We give an example of such a generalisation.

COROLLARY 1. Let $\{(\mathcal{X}^n, \mathcal{F}^n)\}_{n \in \mathbb{N}}$ be a sequence of semimartingales. Let $(\mathcal{X}^\infty, \mathcal{F}^\infty)$ be a process with conditionally independent increments given G,

$$G \subset \bigcap_{n=1}^{\infty} F^n(0),$$

such that $v^{\infty}(\{t\} \times (\mathbb{R} \setminus \{0\})) = 0$, $t \in \mathbb{R}^+$. If we replace condition (i) in Theorem 2 by $(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^\infty, \mathscr{F}^\infty)$ G-stably, then the conclusion of Theorem 2 is still true.

In some special cases we can also omit the assumption (*). A more extensive discussion of this problem may be found in [19].

3. EXTENDED CONVERGENCE OF INCREASING PROCESSES AND LOCAL MARTINGALES

By $\mathscr{A}^+(\mathscr{A}_{loc}^+)$ we denote the family of processes with filtrations $(\mathscr{X}, \mathscr{F})$ which have nondecreasing trajectories and are integrable (locally integrable). Let \mathscr{M}_{loc} denote the family of local martingales and let $(\widetilde{\mathscr{X}}, \mathscr{F}) \in \mathscr{A}_{loc}^+$ be a predictable compensator of the process $(\mathscr{X}, \mathscr{F}) \in \mathscr{A}_{loc}^+$ (i.e. $(\widetilde{\mathscr{X}}, \mathscr{F})$ is predictable and $(\mathscr{X} - \widetilde{\mathscr{X}}, \mathscr{F}) \in \mathscr{M}_{loc}^-$).

Definition 4. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes with filtrations. We say that $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ satisfies the condition (J^p) (or (J_E^p)), p > 0, iff for every $t \in \mathbb{R}^+$ there exists a sequence $\{\tau_n\}_{n\in\mathbb{N}}$ of \mathscr{F}^n -stopping times such that

$$\lim_{n \to \infty} P[\tau_n < t] = 0$$

and

(9) $\{\sup_{\substack{t \leq \tau_n \\ < +\infty}} |\Delta X^n(t)^p\}_{n \in \mathbb{N}}$ is uniformly integrable (or $\sup_{n} E \sup_{t \leq \tau_n} |\Delta X^n(t)|^p$

The two following results (proofs of which are given in Section 4) form a basis for the present section and are essential for the proof of Theorem 1. The first one is an extended version of the well-known theorem by Jacod [8].

PROPOSITION 2. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathscr{M}_{loc} satisfying (\mathbf{J}_E^1) . Assume that $(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^\infty, \mathscr{F}^\infty)$. Then

$$((\mathscr{X}^n, [\mathscr{X}^n]), \mathscr{F}^n) \to ((\mathscr{X}^\infty, [\mathscr{X}^\infty]), \mathscr{F}^\infty).$$

PROPOSITION 3. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathscr{A}_{loc}^+ satisfying (J^1) . Suppose that $(\mathscr{X}^\infty, \mathscr{F}^\infty)$ belongs to $\mathscr{A}_{loc}^+, v^\infty(\{t\} \times (\mathbb{R} \setminus \{0\})) = 0$, $t \in \mathbb{R}^+$. If for a sequence of processes $\{(\mathscr{Y}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ the convergence

 $((\mathscr{Y}^n, \mathscr{X}^n), \mathscr{F}^n) \to ((\mathscr{Y}^\infty, \mathscr{X}^\infty), \mathscr{F}^\infty)$

(*)

holds, then also

$$(\mathscr{Y}^n, \, \mathscr{X}^n, \, \tilde{\mathscr{X}}^n)_{\overrightarrow{a}} (\mathscr{Y}^\infty, \, \mathscr{X}^\infty, \, \tilde{\mathscr{X}}^\infty)$$

in $D(\mathbb{R}^3)$.

We shall also need the concept of a domination between two processes. This notion was introduced by Lenglart [15]. Let $(\mathscr{X}, \mathscr{F})$ and $(\mathscr{Y}, \mathscr{F})$ be two processes with filtrations. Suppose that \mathscr{Y} is nondecreasing, Y(0) = 0. We say that \mathscr{X} is \mathscr{F} -dominated by \mathscr{Y} (and write $\mathscr{X} \prec \mathscr{Y}$) if, for every \mathscr{F} -stopping time τ , $E|X(\tau)| \leq EY(\tau)$. It is clear that Definition 4 and the inequalities of Rebolledo [18] imply

LEMMA 1. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n \in \mathbb{N}}$ and $\{(\mathscr{Y}^n, \mathscr{F}^n)\}_{n \in \mathbb{N}}$ be two sequences of processes with filtrations for which $\mathscr{X}^n \prec \mathscr{Y}^n$, $n \in \mathbb{N}$.

If $\{(\mathcal{Y}^n, \mathcal{F}^n)\}_{n\in\mathbb{N}}$ satisfies (J¹) or is a sequence of predictable processes, then

(10)
$$Y^{n}(\sigma_{n}) \xrightarrow{p} 0 \Rightarrow \sup_{t \leq \sigma_{n}} |X^{n}(t)| \xrightarrow{p} 0,$$

(11) $\lim_{\eta \to \infty} \lim_{n \to \infty} P[Y^n(\sigma_n) \ge \eta] = 0 \Rightarrow \lim_{\eta \to \infty} \lim_{n \to \infty} P[\sup_{t \le \sigma_n} |X^n(t)| \ge \eta] = 0$

for every tight in **R** sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ of \mathcal{F}^n -stopping times.

Now we can formulate and prove our main results about the extended convergence of processes from \mathscr{A}_{loc}^+ and \mathscr{M}_{loc} . We assume that the limit process $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ has the following property:

$$(\mathbf{H}^{1}_{\infty}) \qquad \qquad \sup_{t \leq q} |\Delta X^{\infty}(t)| \leq 1, \quad q \in \mathbf{R}^{+}.$$

THEOREM 3. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathscr{A}_{loc}^+ . Let the limit process $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ satisfy (H^1_{∞}) and (H_{∞}) . Assume that the sequence $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ has property (J^1) . Then the following conditions (i) and (ii) are equivalent:

(i)
$$(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^\infty, \mathscr{F}^\infty);$$

(ii)
$$\begin{cases} (\mathbf{C}) & \tilde{X}^{n}(t) \xrightarrow{p} \tilde{X}^{\infty}(t), \quad t \in \mathbb{R}^{+}, \\ (\mathbf{N}) & \int_{0}^{t} \int_{\mathbb{R}} f(x) v^{n}(ds \times dx) \xrightarrow{p} \int_{0}^{t} \int_{\mathbb{R}} f(x) v^{\infty}(ds \times dx), \quad t \in \mathbb{R}^{+}, f \in C_{v(0)}. \end{cases}$$

Proof. (ii) \Rightarrow (i). First we show that condition (Sup B) holds, i.e.

(12)
$$\widetilde{X}^{h,n}(t) \xrightarrow{P} \widetilde{X}^{h,\infty}(t) = \widetilde{X}^{\infty}(t), \quad t \in \mathbb{R}^+.$$

Let $\{f_{\varepsilon}\}_{\varepsilon>0} \subset C_{\nu(0)}$ be a family of functions such that $|f_{\varepsilon}(x)| \leq 1, x \in \mathbb{R}$, and, for every $\varepsilon > 0$,

(13)
$$f_{\varepsilon}(x) \stackrel{\text{df}}{=} \begin{cases} 0 & \text{for } |x| \leq 1, \\ 1 & \text{for } |x| \geq 1 + \varepsilon. \end{cases}$$

By (N),

$$\int_{0}^{t} \int_{\mathbf{R}} f_{\varepsilon}(x) v^{n}(ds \times dx) \xrightarrow{P} 0, \quad t \in \mathbf{R}^{+}, \varepsilon > 0.$$

In view of (10) we also have

$$\int_{0}^{t} \int_{\mathbf{R}} f_{\varepsilon}(x) N^{n}(ds \times dx) \xrightarrow{P} 0, \quad t \in \mathbf{R}^{+}, \varepsilon > 0.$$

Now we define the new families of processes $\{(\alpha_n, \mathcal{F}_n)\}$ and $\{(\beta_n(\varepsilon), \mathcal{F}^n)\}$:

14)
$$\alpha_n(t) \stackrel{\text{df}}{=} X^n(t) - X^{h,n}(t),$$

(15)
$$\beta_n(t, \varepsilon) \stackrel{\mathrm{df}}{=} \sum_{s \leq t} \Delta X^n(s) I \left(\Delta X^n(s) > 1 + \varepsilon \right),$$

where $n \in \mathbb{N}$, $t \in \mathbb{R}^+$ and $\varepsilon > 0$.

Note that

$$\sum_{s\leq t} I(\Delta X^n(s) > 1+\varepsilon) \xrightarrow{P} 0, \quad n \in \mathbb{N}, \ t \in \mathbb{R}^+, \ \varepsilon > 0.$$

Hence $\beta_n(t, \varepsilon) \xrightarrow{p} 0$ for every $t \in \mathbb{R}^+$ and $\varepsilon > 0$. By the definition of the function *h*, for every $\delta > 0$ there exists an $\varepsilon > 0$ such that if $1 \le |x| \le 1+\varepsilon$, then $|x-h(x)| < \delta$. Therefore

(16)
$$\alpha_n(t) \leq \delta X^n(t) + \beta_n(t, \varepsilon), \quad n \in \mathbb{N}, t \in \mathbb{R}^+, \varepsilon > 0.$$

From (11) and (C) one can easily see that

$$\lim_{\eta\to\infty}\lim_{n\to\infty}P[X^n(t)>\eta]=0.$$

So $\alpha_n(t) \rightarrow 0$, $t \in \mathbb{R}^+$. Since

$$\sup_{t\leq q}|\widetilde{X}^n(t)-\widetilde{X}^{h,n}(t)|=\widetilde{\alpha}_n(q), \quad q\in \mathbb{R}^+,$$

condition (C) is a consequence of (12).

Now we prove condition (M) from Theorem 2. It is sufficient to check that

(17)
$$\int_{0}^{t} \int_{\mathbf{R}} h^2(x) v^n(ds \times dx) \to \int_{0}^{t} \int_{\mathbf{R}} h^2(x) v^\infty(ds \times dx), \quad t \in \mathbf{R}^+,$$

(18)
$$\sum_{s \leq t} (\Delta \tilde{X}^{h,n}(s))^2 \xrightarrow{P} 0, \quad t \in \mathbb{R}^+.$$

Since $\tilde{\mathscr{X}}^{\infty}$ has continuous trajectories, (18) is satisfied trivially. In order

to obtain (17) we define a new sequence of functions $\{h_i\}_{i \in \mathbb{N}} \subset C_{v(0)}$ such that $h^2(x) - h_i^2(x) \ge 0$, $x \in \mathbb{R}$, and, for $i \in \mathbb{N}$,

(19)
$$h_i(x) \stackrel{\text{df}}{=} \begin{cases} 0 & \text{for } |x| \leq 1/i, \\ h(x) & \text{for } |x| > 2/i. \end{cases}$$

Due to condition (N) there exists a sufficiently slowly increasing sequence $\{i_n\}_{n \in \mathbb{N}}$, $(i_n) \subset (n)$, for which

(20)
$$\int_{0}^{t} \int_{\mathbf{R}} h_{i_n}^2(x) v^n (ds \times dx) \xrightarrow{r} \int_{0}^{t} \int_{\mathbf{R}} h^2(x) v^\infty (ds \times dx), \quad t \in \mathbf{R}^+$$

Since

$$\int_{0}^{r} \int_{\mathbf{R}} (h^{2}(x) - h_{i_{n}}^{2}(x)) N^{n}(ds \times dx) \leq (2/i_{n})^{2} X^{n}(t), \quad n \in \mathbb{N}, \ t \in \mathbf{R}^{+},$$

we have, by (10),

$$\int_{0}^{t} \int_{\mathbf{R}} \left(h^2(x) - h_{i_n}^2(x) \right) v^n (ds \times dx) \xrightarrow{P} 0, \quad t \in \mathbf{R}^+.$$

(i) \Rightarrow (ii). It is a trivial consequence of Theorem 2 and Proposition 3.

Due to Theorem 3 we may deduce the necessary and sufficient conditions for the extended convergence in the case where the limit process is a simple Poisson process (N, \mathcal{F}^N) .

COROLLARY 2. Let $\{(\mathcal{X}^n, \mathcal{F}^n)\}_{n \in \mathbb{N}}$ be a sequence of processes from \mathscr{A}_{loc}^+ satisfying (J^1) . If we define the new sequences of processes $\{(\delta_n, \mathcal{F}^n)\}_{n \in \mathbb{N}}$ and $\{(\gamma_n(\varepsilon), \mathcal{F}^n)\}_{n \in \mathbb{N}}$ by the formulae

$$\delta_n(t) \stackrel{\mathrm{df}}{=} X^n(t) - \sum_{s \leq t} \Delta X^n(s), \quad \gamma_n(t, \varepsilon) = \sum_{s \leq t} \Delta X^n(s) I \left(|\Delta X^n(s) - 1| > \varepsilon \right),$$
$$n \in \mathbb{N}, \ t \in \mathbb{R}^+, \ \varepsilon > 0,$$

then the following two conditions are equivalent:

(i) ($\mathfrak{X}^{n}, \mathfrak{F}^{n}$) \rightarrow $(N, \mathfrak{F}^{N}),$ (ii) $\begin{cases}
(21) \quad \tilde{X}^{n}(t) \xrightarrow{P} EN(t), \quad t \in \mathbb{R}^{+}, \\
(22) \quad \tilde{\delta}_{n}(t) \xrightarrow{P} 0, \quad t \in \mathbb{R}^{+}, \\
(23) \quad \tilde{\gamma}_{n}(t, \varepsilon) \xrightarrow{P} 0, \quad t \in \mathbb{R}^{+}, \varepsilon > 0.
\end{cases}$

It is not difficult to obtain the following characterisation of the extended convergence of local martingales, applying the arguments from the proof of Theorem 3 and Proposition 2:

THEOREM 4. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathscr{M}_{loc}

satisfying (J^2) . Suppose also that for the limit process $(\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$ conditions (H_{∞}) and (H_{∞}^1) holds. Then two following conditions are equivalent:

(i)
$$(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^\infty, \mathscr{F}^\infty);$$

(ii)
$$\begin{cases} (D) & \langle \mathscr{X}^n \rangle(t) \to \langle \mathscr{X}^\infty \rangle(t), \quad t \in \mathbb{R}^+, \\ (N) & \int_0^t \int_{\mathbb{R}} f(x) v^n (ds \times dx) \xrightarrow{t}_P \int_0^t \int_{\mathbb{R}} f(x) v^\infty (ds \times dx), \quad t \in \mathbb{R}^+, f \in C_{v(0)}. \end{cases}$$

At the end of this section we discuss the cases where the limit processes are the most interesting local martingales: $(N - EN, \mathcal{F}^N)$ and (W, \mathcal{F}^W) .

COROLLARY 3. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathscr{M}_{loc} satisfying (J^2) . If we define a family of processes $\{(\beta_n(\varepsilon), \mathscr{F}^n)\}_{n\in\mathbb{N}}, \varepsilon > 0$, by the formulae

$$\beta_n(t,\varepsilon) = \sum_{s \leq t} (\Delta X^n(s))^2 I(|\Delta X^n(s) - 1| > \varepsilon), \quad n \in \mathbb{N}, \ t \in \mathbb{R}^+, \ \varepsilon > 0,$$

then two following conditions are equivalent:

(i)
$$(\mathscr{X}^n, \mathscr{F}^n) \to (N - EN, \mathscr{F}^N);$$

(ii)
$$\begin{cases} (24) \langle \mathscr{X}^n \rangle(t) \xrightarrow{p} EN(t), & t \in \mathbb{R}^+, \\ (25) \langle \mathscr{X}^{n,c} \rangle(t) \xrightarrow{p} 0, & t \in \mathbb{R}^+, \\ (26) \tilde{\beta}_n(t, \varepsilon) \xrightarrow{p} 0, & t \in \mathbb{R}^+, \varepsilon > 0. \end{cases}$$

COROLLARY 4. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathscr{M}_{loc} satisfying (J^2) . If $\{(\alpha_n(\varepsilon), \mathscr{F}^n)\}_{n\in\mathbb{N}}, \varepsilon > 0$, is a family of processes given by the formulae

$$\alpha_n(t, \varepsilon) = \sum_{s \leq t} (\Delta X^n(s))^2 I(|\Delta X^n(s)| > \varepsilon), \quad n \in \mathbb{N}, \ t \in \mathbb{R}^+, \ \varepsilon > 0,$$

then the three following conditions are equivalent:

(i)
$$(\mathscr{X}^n, \mathscr{F}^n) \to (W, \mathscr{F}^W);$$

(ii) $\mathscr{X}^n \xrightarrow{\rightarrow} W;$

(iii)
$$\begin{cases} (27) & \langle \mathscr{X}^n \rangle(t) \xrightarrow{P} EW^2(t), \quad t \in \mathbb{R}^+, \\ (28) & \widetilde{\alpha}_n(t, \varepsilon) \xrightarrow{P} 0, \quad t \in \mathbb{R}^+, \varepsilon > 0. \end{cases}$$

4. PROOFS

LEMMA 2. Let $(\mathscr{Z}, \mathscr{F})$ be a prediction process of $(\mathscr{X}, \mathscr{F})$. Suppose that on a probability space $(\bar{\Omega}, \bar{F}, \bar{P})$ there are given the process $\bar{\mathscr{X}}$ and the family of processes $\{Y_{T,\theta,m}\}$, where $m \in \mathbb{N}, T \in \mathbb{Q}^m, \theta \in [\mathbb{Q} \cup -\mathbb{Q}]^m (-\mathbb{Q} = \{t: -t \in \mathbb{Q}\})$

and
$$Q$$
 is a countable, dense subset of \mathbf{K} , $Q \in \operatorname{Cont} \mathcal{X} \cap \operatorname{Cont} \mathcal{D}$ such the
(29) $\mathscr{L}((X(t_1), X_{T,\Theta^1,m}(t_1)), \dots, (X(t_m), X_{T,\Theta^m,m}(t_m))))$
 $= \mathscr{L}((\bar{X}(t_1), Y_{T,\Theta^1,m}(t_1)), \dots, (\bar{X}(t_m), Y_{T,\Theta^m,m}(t_m))))$

for every $m \in N$, $T \in Q^m$, $\Theta^i \in [Q \cup -Q]^m$, i = 1, 2, ..., m. Let \mathscr{G} be a filtration on $(\overline{\Omega}, \overline{F}, \overline{P})$,

$$\dot{G}(t) \stackrel{\text{df}}{=} \bigcap_{u > t} \sigma\left((\bar{X}(s), Y_{T,\Theta,m}(s)): s \leq u, T \in Q^m, \Theta \in [Q \cup -Q]^m, m \in N\right)$$

and let (\bar{x}, G) be a prediction process of (\bar{x}, G) . Then

(30)
$$\bar{\mathscr{X}}_{T, \Theta, m} = Y_{T, \Theta, m}, \quad m \in \mathbb{N}, \ T \in Q^{m}, \ \Theta \in [Q \cup -Q]^{m},$$

(31) $\mathscr{L}((\mathscr{X}, \mathscr{Z})) = \mathscr{L}((\bar{\mathscr{X}}, \bar{\mathscr{Z}})).$

Proof. We have to check that for every $t \in Q$, $T \in Q^m$, $\Theta \in [Q \cup -Q]^m$, $m \in N$,

$$Y_{T,\Theta,m}(t) = \overline{E} \left(h_{T,\Theta,m}(\overline{X}) | G(t) \right),$$

where the mapping $h_{T,0,m}$: $D(\mathbf{R}) \to \mathbf{C}$ is defined by

(32)
$$h_{T, \boldsymbol{\Theta}, m}(x) \stackrel{\text{df}}{=} \exp i \sum_{k=1}^{m} \theta_k x(t_k), \quad x \in D(\boldsymbol{R}).$$

Since $Y_{T,\theta,m}(t)$ is G(t)-measurable and, by the arguments from the proof of Proposition 1 in [12],

$$EI(A) Y_{T, \theta, m}(t) = EI(A) h_{T, \theta, m}(\mathcal{X}), \qquad t \in Q, \ A \in G(t),$$

the first conclusion follows.

In order to finish the proof it is sufficient, due to the inclusion $Q \subset \text{Cont } \mathscr{Z}$, to verify that, for every $m \in N$ and $T \in Q^m$,

$$\mathscr{L}\big(\big(X(t_1), Z(t_1)\big), \ldots, \big(X(t_m), Z(t_m)\big)\big) = \mathscr{L}\big((\bar{X}(t_1), \bar{Z}(t_1)\big), \ldots, \big(\bar{X}(t_m), \bar{Z}(t_m)\big)\big).$$

But this result immediately follows from Lemma 6 [12] and the equalities

$$\mathscr{L}(X_{T,\Theta^1,m}(t_1),\ldots,X_{T,\Theta^m,m}(t_m)) = L(\bar{X}_{T,\Theta^1,m}(t_1),\ldots,\bar{X}_{T,\Theta^m,m}(t_m))$$

for every $m \in N$, $T \in Q^m$, $\Theta^i \in [Q \cup -Q]^m$, i = 1, 2, ..., m.

LEMMA 3 (Aldous [1]). Let S and S_1 be two Polish spaces. The sequence $\{(x_n, z_n)\}_{n \in \mathbb{N}} \subset D(S \times S_1)$ is relatively compact iff the following conditions are satisfied:

(33) { $(x_n(t), z_n(t); t \leq q)$ is relatively compact in $S \times S_1$;

(34) suppose that the sequence $\{t_n^i\}_{n\in\mathbb{N}}$, i = 1, 2, 3, are such that $t_n^1 \leq t_n^2 \leq t_n^3$, $n \in \mathbb{N}$, $t_n^i \to t$, i = 1, 2, 3, and $(x_n(t_n^i), z_n(t_n^i)) \to (x^i, z^i)$,

$$i = 1, 2, 3;$$
 then

$$(x^1, z^1) = (x^2, z^2)$$
 or $(x^2, z^2) = (x^3, z^3);$

(35) suppose that the sequence $\{t_n\}_{n\in\mathbb{N}}$ is such that $t_n \downarrow 0$ and $(x_n(0), z_n(0)) \rightarrow (x^0, z^0), (x_n(t_n), z_n(t_n)) \rightarrow (x^1, z^1);$ then $(x^0, z^0) = (x^1, z^1).$

Proof of Proposition 1. First suppose that assumptions (i) and (ii) hold for every $m \in N$, every $T \in Q^m$, $\Theta \in [Q \cup -Q]^m$ for some countable and dense subset of $Q \subset \mathbb{R}^+$ such that

$$\mathbf{Q} \subset \bigcap_{n \in \mathbf{N} \cup \{\infty\}} [\operatorname{Cont} \mathscr{X}^n \cap \operatorname{Cont} \mathscr{X}^n].$$

Let $h_{T,\Theta,m}$ be the mapping defined by (32) for which $T \in Q^m$ and $\Theta \in [Q \cup -Q]^m$. It follows from the definition that $P(\mathscr{X}^n \in D_{h_{T,\Theta,m}}) = 0$, $n \in N \cup \{\infty\}$, where

 $D_{h_{T,\Theta,m}} = \{x \in D(\mathbb{R}): h_{T,\Theta,m} \text{ is discontinuous in } x\}.$

Due to the maximal inequality we have, for every $\varepsilon > 0$, $n \in N$ and $q \in \mathbb{R}^+$,

$$P\left[\sup_{t \leq q} Z^{n}(t)(D_{h_{T,\Theta,m}}) \geq \varepsilon\right] \leq \varepsilon^{-1} E Z^{n}(q)(D_{h_{T,\Theta,m}})$$
$$= \varepsilon^{-1} P\left[X^{n} \in D_{h_{T,\Theta,m}}\right] = 0$$

Hence

(36) $P[\tilde{h}_{T,\Theta,m}]$ is continuous in $Z^{n}(t)$ and

$$Z^{n}(t-): t \in \mathbb{R}^{+}, n \in \mathbb{N} \cup \{\infty\}] = 1,$$

where $\bar{h}_{T,\Theta,m}$: $\mathscr{P}(D(\mathbb{R})) \to C$ is defined by the formulae

$$\tilde{h}_{T,\Theta,m}(p) = \int_{\mathbb{R}^m} \exp i \sum_{k=1}^m \theta_k x_k p_{t_1,\ldots,t_m}(dx_1,\ldots,dx_m), \quad p \in \mathscr{P}(D(\mathbb{R})).$$

By simple calculations

(37)
$$P\left[\tilde{h}_{T,\boldsymbol{\theta},\boldsymbol{m}}(Z^{n}(t)) = X^{n}_{T,\boldsymbol{\theta},\boldsymbol{m}}(t): t \in \mathbb{R}^{+}, n \in \mathbb{N} \cup \{\infty\}\right] = 1$$

for every $m \in N$, $T \in Q^m$, $\Theta \in [Q \cup -Q]^m$. Since $Q \subset \text{Cont } \mathscr{X}^{\infty}_{T,\Theta,m}$, by (i) and (ii),

(38) $((\mathscr{X}^n, \mathscr{X}^n_{T,\Theta^1,m}), \dots, (\mathscr{X}^n, \mathscr{X}^n_{T,\Theta^m,m})) \xrightarrow{d} ((\mathscr{X}^\infty, \mathscr{X}^\infty_{T,\Theta^1,m}), \dots, (\mathscr{X}^\infty, \mathscr{X}^\infty_{T,\Theta^m,m}))$ in $[D(\mathbb{C}^2)]^m, m \in \mathbb{N}, T \in \mathbb{Q}^m, \Theta^i \in [\mathbb{Q} \cup -\mathbb{Q}]^m, i = 1, 2, \dots, m.$

Condition (38) may be replaced by the equivalent one:

 $\mathscr{Y}^n \to \mathscr{Y}^\infty$ in $[D(\mathbb{C}^2)]^\infty$,

where $\mathscr{Y}^n = (\mathscr{Y}_1^n, \mathscr{Y}_2^n, ...)$ and $\mathscr{Y}_k^n = (\mathscr{X}^n, \mathscr{X}_{T_k, \Theta_k, m_k}^n)$ for some $T_k \in \mathbb{Q}^{m_k}$, $\Theta_k \in [\mathbb{Q} \cup -\mathbb{Q}]^{m_k}$, $m_k \in N$, $n \in N$.

According to the Skorokhod representation theorem (see e.g. [7]) there exists a probability space $(\overline{\Omega}, \overline{F}, \overline{P})$ and a sequence of processes $\{\overline{\mathscr{Y}}^n\}_{n\in\mathbb{N}\cup\{\infty\}}$, defined on that space, such that $\mathscr{L}(\mathscr{Y}^n) = \mathscr{L}(\overline{\mathscr{Y}}^n)$ and

$$\bar{\mathscr{Y}}^n(\bar{\omega}) \to \bar{\mathscr{Y}}^\infty(\bar{\omega}) \quad \text{ in } [D(\mathbb{C}^2)]^\infty$$

for almost all $\bar{\omega} \in \bar{\Omega}$. By Lemma 2 we may assume that

(39)
$$\mathscr{Y}^{n}(\omega) \to \mathscr{Y}^{\infty}(\omega) \quad \text{in } [D(\mathbb{C}^{2})]^{\infty}$$

for almost all $\omega \in \Omega$.

Now observe that, by Proposition 43.6 from [1], $\{Z^n(t): t \leq q\}$ is relatively compact in $\mathscr{P}(D(\mathbb{R}))$ for every $q \in \mathbb{R}^+$. Hence, passing to a subsequence if necessary, we infer that $\{Z^n(t, \omega): t \leq q\}$ is relatively compact in $\mathscr{P}(D(\mathbb{R}))$ for every $q \in \mathbb{R}^+$ and almost all $\omega \in \Omega$.

Let us fix an $\omega \in \Omega$. We apply Lemma 3 to the sequence $\{(\mathscr{X}^n(\omega), \mathscr{Z}^n(\omega))\}_{n \in \mathbb{N}} \subset D(\mathbb{R} \times \mathscr{P}(D(\mathbb{R})))$. By (39) and the considerations above it is obvious that condition (33) holds.

Let us note that for a fixed function $\tilde{h}_{T,\Theta,m}$ there holds by (39) at least one of the following pairs of conditions:

(40)
$$\begin{cases} \left(X^{n}(t_{n}^{1}, \omega), \tilde{h}_{T, \boldsymbol{\Theta}, m}(Z^{n}(t_{n}^{1}, \omega))\right) \rightarrow \left(X^{\infty}(t -, \omega), \tilde{h}_{T, \boldsymbol{\theta}, m}(Z^{\infty}(t -, \omega))\right), \\ \left(X^{n}(t_{n}^{2}, \omega), \tilde{h}_{T, \boldsymbol{\Theta}, m}(Z^{n}(t_{n}^{2}, \omega))\right) \rightarrow \left(X^{\infty}(t -, \omega), \tilde{h}_{T, \boldsymbol{\theta}, m}(Z^{\infty}(t -, \omega))\right); \end{cases}$$

(41)
$$\begin{cases} \left(X^{n}(t_{n}^{2},\omega),\,\tilde{h}_{T,\,\boldsymbol{\Theta},\boldsymbol{m}}(Z^{n}(t_{n}^{2},\omega))\right) \rightarrow \left(X^{\infty}(t,\,\omega),\,\tilde{h}_{T,\,\boldsymbol{\theta},\boldsymbol{m}}(Z^{\infty}(t,\,\omega))\right),\\ \left(X^{n}(t_{n}^{3},\,\omega),\,\tilde{h}_{T,\,\boldsymbol{\Theta},\boldsymbol{m}}(Z^{n}(t_{n}^{3},\,\omega))\right) \rightarrow \left(X^{\infty}(t,\,\omega),\,\tilde{h}_{T,\,\boldsymbol{\theta},\boldsymbol{m}}(Z^{\infty}(t,\,\omega))\right) \end{cases}$$

for every sequence $\{t_n^i\}_{n\in\mathbb{N}}$, i = 1, 2, 3, from (34).

In the case where (40) holds, (34) is satisfied with $x^2 = x^1 = X^{\infty}(t - , \omega)$, $z^2 = z^1 = Z^{\infty}(t - , \omega)$. Similarly, (41) implies (34) with $x^2 = x^3 = X^{\infty}(t, \omega)$, $z^2 = z^3 = Z^{\infty}(t, \omega)$. In the same way (35) can be obtained. Therefore condition (39) implies

(42)
$$(\mathscr{X}^{n}(\omega), \mathscr{Z}^{n}(\omega)) \to (\mathscr{X}^{\infty}(\omega), \mathscr{Z}^{\infty}(\omega)) \text{ in } D(\mathbb{R} \times \mathscr{P}(D(\mathbb{R})))$$

for almost all $\omega \in \Omega$ and, as a consequence, $(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^\infty, \mathscr{F}^\infty)$.

Now we prove the converse implications. Due to the Skorokhod representation theorem we may assume (42), so conditions (36), (37) and Lemma 3 complete the proof of Proposition 1.

COROLLARY 5. Let $h: D(\mathbb{R}) \to D(\mathbb{R})$ be a measurable mapping such that $P(\mathscr{X}^{\infty} \in D_h) = 0$. Assume that $(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^{\infty}, \mathscr{F}^{\infty})$. If the sequence of processes $\{h(\mathscr{X}^n)\}_{n \in \mathbb{N}}$ is adapted to the sequence of filtrations $\{\mathscr{F}^n\}_{n \in \mathbb{N}}$, then

$$((\mathscr{X}^n, h(\mathscr{X}^n)), \mathscr{F}^n) \to ((\mathscr{X}^\infty, h(\mathscr{X}^\infty)), \mathscr{F}^\infty).$$

COROLLARY 6. Let $\{(\mathscr{X}_i^n, \mathscr{F}^n)\}_{n\in\mathbb{N}\cup\{\infty\},i\in\mathbb{N}}$ and $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}\cup\{\infty\}}$ be families of processes with filtrations. Suppose that

(43)
$$(\mathscr{X}_{i}^{n}, \mathscr{F}^{n}) \to (\mathscr{X}_{i}^{\infty}, \mathscr{F}^{\infty}), \quad i \in \mathbb{N},$$

(44)
$$(\mathscr{X}_{i}^{\infty}, \mathscr{F}^{\infty}) \to (\mathscr{X}^{\infty}, \mathscr{F}^{\infty}),$$

(45)
$$\lim_{i\to\infty}\lim_{n\to\infty}P[\sup_{t\leq q}|X_i^n(t)-X^n(t)|\geq \varepsilon]=0, \quad \varepsilon>0.$$

Then

$$(\mathscr{X}^n, \mathscr{F}^n) \to (\mathscr{X}^\infty, \mathscr{F}^\infty).$$

Proof of Proposition 2. We use the technics of Jacod [8]. We start from some elementary remarks.

Let $\{\delta_i\}_{i\in\mathbb{N}}$ be a sequence of positive constants. For $x \in D(\mathbb{R})$ we define a sequence of partitions of \mathbb{R}^+ , $\{t_{ik}^x\}$, such that

(46)
$$t_{i0}^{x} = 0, \quad t_{i,k+1}^{x} = (t_{ik}^{x} + \delta_{ik}) \wedge \inf[t: t > t_{ik}^{x}, |\Delta x(t)| > \delta_{i}],$$

where $\delta_i/2 \leq \delta_{ik} \leq \delta_i$, $i, k \in \mathbb{N}$.

Suppose that $\Delta x_{\infty}(t) \neq \delta_i$, $t \in \mathbb{R}^+$, and $\Delta x_{\infty}(t_{ik}^{x_{\infty}} + \delta_{ik}) = 0$. In this case the mappings $h^i: D(\mathbb{R}) \to D(\mathbb{R})$, $i \in \mathbb{N}$, defined by

(47)
$$h^{i}(x)(t) = \sum_{k=0}^{r_{i}^{i}(t)} (t_{i,k+1}^{x} \wedge t) - x(t_{ik}^{x}))^{2}, \quad x \in D(\mathbb{R}),$$

are continuous in x_{∞} , $i \in N$.

Now let $\{\delta_i\}_{i \in \mathbb{N}}$, $\{\delta_{ik}\}_{i \in \mathbb{N}, k \in \mathbb{N} \cup \{\infty\}}$ be two families of constants such that $\delta_i \downarrow 0, \ \delta_i/2 \leq \delta_{ik} \leq \delta_i$ and $P(\mathscr{X}^{\infty} \in D_{\mu^i}) = 0, \ i \in \mathbb{N}$. Therefore, by Corollary 5,

(48)
$$((X^n, h^i(\mathscr{X}^n)), \mathscr{F}^n) \to ((\mathscr{X}^\infty, h^i(\mathscr{X}^\infty)), \mathscr{F}^\infty), \quad i \in \mathbb{N}$$

Using the arguments of Jacod [8] we obtain

LEMMA 4. Let $\{(\mathcal{X}^n, \mathcal{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathcal{M}_{loc} and satisfy (\mathbf{J}^1_E) . If $\mathcal{X}^n \xrightarrow{\sim} \mathcal{X}^{\infty}$, then, for every $\varepsilon > 0$,

(49)
$$\lim_{t\to\infty} \overline{\lim} P[\sup_{t\to\infty} |h^i(\mathscr{X}^n)(t) - [\mathscr{X}^n](t)| \ge \varepsilon] = 0, \quad q \in \mathbb{R}^+,$$

(50) $\sup_{t \leq q} |h^{t}(\mathscr{X}^{\infty})(t) - [\mathscr{X}^{\infty}](t)| \xrightarrow{P} 0, \quad q \in \mathbb{R}^{+}.$

In order to complete the proof we use the two-dimensional version of Corollary 6. We get $\mathscr{X}_i^n = (\mathscr{X}^n, h^i(\mathscr{X}^n)), n \in \mathbb{N} \cup \{\infty\}, i \in \mathbb{N}, \mathscr{X}^n = (\mathscr{X}^n, [\mathscr{X}^n]), n \in \mathbb{N} \cup \{\infty\}, \mathscr{F}^n = \mathscr{F}^n, n \in \mathbb{N} \cup \{\infty\}.$

Proof of Proposition 3.

LEMMA 5. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of processes from \mathscr{A}_{loc}^+ and $(\mathscr{X}^\infty, \mathscr{F}^\infty) \in \mathscr{A}^+$. Suppose that $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ satisfies (J^1) and $\mathscr{X}^n \xrightarrow{}_{\mathscr{D}_f} \mathscr{X}^\infty (\xrightarrow{}_{\mathscr{D}_f} \mathscr{D}_f)$ means convergence of the finite-dimensional distribution). Then there exists a

Extended convergence of semimartingales

sequence $\{(\mathscr{Y}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ of processes from \mathscr{A}_{loc}^+ such that

(51)
$$\sup_{t \leq q} |X^n(t) - Y^n(t)| \xrightarrow{P} 0, \quad q \in \mathbb{R}^+,$$

(52)
$$\sup_{t \leq q} |\tilde{X}^n(t) - \tilde{Y}(t)| \xrightarrow{P} 0, \quad q \in \mathbb{R}^+,$$

(53)
$$\{Y^n(t)\}_{n\in\mathbb{N}}$$
 is uniformly integrable, $t\in\mathbb{R}^+$

Proof. Let $\{\varepsilon_m\}_{m \in \mathbb{N}}$, $\{t_m\}_{m \in \mathbb{N}}$ be two sequences of nonnegative numbers for which $\varepsilon_m \downarrow 0$, $0 = t_0 < t_1 < \dots$,

$$\lim_{k \to \infty} t_{mk} = +\infty$$

and $\{t_m\}_{m \in \mathbb{N}} \subset \operatorname{Cont}(\mathscr{X}^{\infty})$. The convergence $\mathscr{X}^n \xrightarrow{D_f} \mathscr{X}^{\infty}$ implies that, for every $m \in \mathbb{N}$ and every i < m, there exists a constant N(m) such that for each n > N(m) we have

(54)
$$\left|E\left(X^{n}(t_{i}) \wedge \varepsilon_{m}^{-1}\right) - E\left(X^{\infty}(t_{i}) \wedge \varepsilon_{m}^{-1}\right)\right| < \varepsilon_{m}.$$

Now define a sequence $\{x_n\}_{n \in \mathbb{N}}$ of elements from $D(\mathbb{R})$ and a sequence of processes $\{\mathcal{Y}^n\}_{n \in \mathbb{N}}$ as follows:

(55)
$$x_n(t) \stackrel{\text{df}}{=} \begin{cases} \varepsilon_m^{-1}, & t < t_m, \\ \varepsilon_{i+1}^{-1}, & t_i \leq t < t_{i+1}, \ i \geq m, \end{cases}$$

(56)
$$Y^{n}(t) \stackrel{\mathrm{df}}{=} X^{n}(t) \wedge x_{n}(t), \quad t \in \mathbb{R}^{+},$$

for $m \in \mathbb{N}$, $N(m) \leq n < N(m+1)$ and $\mathscr{Y}^n \stackrel{\text{df}}{=} x_n$ for n < N(1).

Let us fix an $m \in N$, $\varepsilon > 0$. Since $x_n(0) \to +\infty$ as $n \to +\infty$ and, for every c > 0, $\varepsilon > 0$,

$$\lim_{n \to \infty} P[\sup_{t \le t_m} |X^n(t) - Y^n(t)| \ge \varepsilon] \le \lim_{n \to \infty} P[X^n(t_m) \ge x_n(0)]$$
$$\le \lim_{n \to \infty} P[X^n(t_m) \ge c] \le P[X^\infty(t_m) \ge c],$$

condition (51) holds.

In order to prove (52) let us observe that for $n \ge N(m+1)$ the process $(X^n - Y^n)(\cdot \wedge t_m)$ is increasing. Since, for $n \ge N(m+1)$, also $(\mathscr{X}^n - \mathscr{Y}^n)(\cdot \wedge t_m) \prec (\mathscr{X}^n - \mathscr{Y}^n)(\cdot \wedge t_m)$, conditions (51) and (10) imply (52).

Finally, let us observe that, by (54),

$$\lim_{n\to\infty} EX^n(t_m) = EX^\infty(t_m)$$

and, by Theorem 5.4 of [2], the sequence $\{Y^n(t_m)\}_{n\in\mathbb{N}}$ is uniformly integrable, $m \in \mathbb{N}$. Hence (53) is satisfied.

To prove Proposition 3 we will also use the following modification of Theorem 16.3 from Aldous [1]:

LEMMA 6. Let $\{(\mathscr{X}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ be a sequence of submartingales such that the families $\{X^n(\tau_n): \tau_n \text{ is } \mathscr{F}^n\text{-stopping time, } \tau_n \leq q\}_{n\in\mathbb{N}}, \{X^{\infty}(\tau_{\infty}): \tau_{\infty} \text{ is } \mathscr{F}^{\infty}\text{-stopping time, } \tau_{\infty} \leq q\}$ are uniformly integrable, $q \in \mathbb{R}^+$. Suppose that $v^{\infty}(\{t\} \times \mathbb{R}^+ \setminus \{0\}) = 0, t \in \mathbb{R}^+, and \{(\mathscr{Y}^n, \mathscr{F}^n)\}_{n\in\mathbb{N}}$ is a sequence of processes with filtrations for which $((\mathscr{Y}^n, \mathscr{X}^n), \mathscr{F}^n) \to ((\mathscr{Y}^{\infty}, \mathscr{X}^{\infty}), \mathscr{F}^{\infty}).$

Then $(\mathscr{Y}^n, \mathscr{X}^n, \widetilde{\mathscr{X}}^n) \xrightarrow{\rightarrow} (\mathscr{Y}^\infty, \mathscr{X}^\infty, \widetilde{\mathscr{X}}^\infty)$ in $D(\mathbb{R}^3)$.

Now we are ready to prove Proposition 3. It is clear, by Corollary 5, that

$$((\mathscr{Y}^n, \mathscr{X}^n \wedge i), \mathscr{F}^n) \to (\mathscr{Y}^\infty, \mathscr{X}^\infty \wedge i), \quad i \in \mathbb{N}.$$

Since $(\mathscr{X}^{\infty} \wedge i, \mathscr{F}^{\infty}) \in \mathscr{A}^+$, by Lemmas 5 and 6 we have

$$(\mathscr{Y}^n, \mathscr{X}^n \wedge i, \widetilde{\mathscr{X}^n \wedge i}) \xrightarrow{d} (\mathscr{Y}^\infty, \mathscr{X}^\infty \wedge i, \mathscr{X}^\infty \wedge i)$$
 in $D(\mathbb{R}^3)$.

Now observe that

$$\lim_{i \to \infty} \lim_{n \to \infty} P\left[\sup_{t \leq q} |X^n(t) - X^n(t) \wedge i| \geq \varepsilon\right] = 0, \quad \varepsilon > 0, \ q \in \mathbb{R}^+,$$
$$\sup_{t \leq q} |X^\infty(t) - X^\infty(t) \wedge i| \xrightarrow{P} 0, \quad q \in \mathbb{R}^+.$$

Therefore, by (10), for $\varepsilon > 0$ and $q \in \mathbb{R}^+$,

$$\lim_{i\to\infty} \overline{\lim_{n\to\infty}} P\left[\sup_{t\leqslant q} |\widetilde{X}^n(t) - \widetilde{X^n \wedge i}(t)| \ge \varepsilon\right] = 0$$

and

$$\sup_{t\leq q}|\tilde{X}^{\infty}(t)-\overline{X^{\infty}\wedge i}(t)|\xrightarrow{P} 0.$$

Hence, due to the classical Theorem 4.2 from [2], the proof of Proposition 3 is completed.

Proof of Theorem 1. It is easy to see that, by Corollary 5, we have

(57)
$$((\mathscr{X}^{h,n}, B^{h,n}), \mathscr{F}^n) \to ((\mathscr{X}^{h,\infty}, B^{\infty}), \mathscr{F}^{\infty})$$

(58)
$$\left(\iint\limits_{\mathbf{0}} \int\limits_{\mathbf{R}} f(x) N^{n}(ds \times dx), \mathscr{F}^{n} \right) \to \left(\iint\limits_{\mathbf{0}} \int\limits_{\mathbf{R}} f(x) N^{\infty}(ds \times dx), \mathscr{F}^{\infty} \right), \quad f \in C_{v(0)}.$$

By (57) and the equalities $\dot{M}^n = \mathscr{X}^{h,n} - B^{h,n}$, $M^\infty = \mathscr{X}^{h,\infty} - B^\infty$ $(n \in \mathbb{N})$ we get $(M^n, \mathscr{F}^n) \to (M^\infty, \mathscr{F}^\infty)$. Since

$$\sup |\Delta M^n(t)| \leq 4,$$

by Proposition 2 we obtain

(59)
$$((M^n, [M^n]), \mathscr{F}^n) \to ((M^\infty, [M^\infty]), \mathscr{F}^\infty).$$

Finally, we apply Proposition 3 to the process from (58) and (59), and conclusions (M) and (N) follow.

REFERENCES

- [1] D. J. Aldous, A concept of weak convergence for stochastic processes viewed in the Strasbourg manner, Preprint, Statist. Laboratory Univ. Cambridge (1979).
- [2] P. Billingsley, Convergence of probability measures, New York 1968.
- [3] T. Brown, A martingale approach to the Poisson convergence of simple point processes, Ann. Probab. 6 (1978), p. 615-628.
- [4] B. Grigelionis and R. Mikulevicius, On weak convergence of semimartingales, Lietuvos mat. rinkinys 21.3 (1981), p. 9-24.
- [5] On stably weak convergence of semimartingales and point processes, Th. Probab. Appl. 28.2 (1983), p. 320-332.
- [6] B. Grigelionis, R. Mikulevicius and K. Kubilius, Martingale approach to functional limit theorems, Russian Math. Surveys 37, 6, 228 (1982), p. 39-51.
- [7] N. Ikeda and S. Watanabe, Stochastic differential equation and diffusion processes, New York 1981.
- [8] J. Jacod, Convergence en loi de semimartingales et variation quadratique, Lecture Notes in Math. 850 (1980), p. 547-560.
- [9] Théorème limite pour les processus, Cours de l'Ecole d'Eté de St. Flour, 1983.
- [10] Une généralisation des semimartingales: les processus admettant un processus à accroissements indépendants tangent, Lecture Notes in Math. 1059 (1984), p. 91–118.
- [11] J. Jacod, A. Kłopotowski and J. Mamin, Théorème de la limite centrale et convergence fonctionnelle vers un processus à acroissements indépendants: la méthode des martingales, Ann. I.H.P. 18.1 (1982), p. 1-45.
- [12] A. Jakubowski and L. Słomiński, Extended convergence to continuous in probability process with independent increments, Probab. Theory and Related Fields (1986).
- [13] K. Kubilius, Necessary and sufficient conditions for the convergence of semimartingales to the process with conditionally independent increments, Lietuvos mat. rinkinys 24.2 (1984), p. 97-112.
- [14] K. Kubilius and R. Mikulevicius, Necessary and sufficient conditions for the convergence of semimartingales and point processes, ibidem 24.3 (1983), p. 139-147.
- [15] E. Lenglart, Relation de domination' entre deux processes, Ann. I.H.P. 23.2 (1977), p. 171-179.
- [16] R. Liptser and A. Shiryaev, Necessary and sufficient conditions for the functional central limit theorem for semimartingales, Th. Probab. Appl. 26 (1981), p. 132-137.
- [17] On a problem of necessary and sufficient conditions in the functional central limit theorem for local martingales, Z. Wahr. verw. Gebiete 59 (1982), p. 311–318.
- [18] R. Rebolledo, Central limit theorems for local martingales, ibidem 51 (1980), p. 269-286.
- [19] L. Słomiński, On G-stable convergence of semimartingales, Lietuvos mat. rinkinys 26.2 (1986), p. 144-160.
- [20] Some remarks about discreet approximation of predictable characteristics of semimartingales, Preprint (1985).

Institute of Mathematics Nicholas Copernicus University 87-100 Toruń ul. Chopina 12/18 Poland

Received on 4. 3. 1985