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W I E m R  PROCESSES A N D  STOCHASTIC 
INTEGRAU IN A BANACH SPACE 

Ahsrrcrct. The representations of Wiener process by uniformly 
convergent series of onedimensional Gaussian random processes in 
a separable Banach space are given (Section I). The Ito stochastic 
integral of an operator-valued random function by a Wiener process 
in a Banach space is defined (Section 111); Section I1 contains an 
auxiliary material: there is defined a stochastic integral of a random 
function with values in the dual space. 

The method of the paper is based on the use of the concept of 
covariance operator. 

Let X be a real separable Banach space, X* - its dual, (a, a ,  P) - a 
probability space, and p - a centered Gaussian measure on the Bore1 a+ 
algebra of X. It is well-known [16] that the characteristic functional of ,u has 
the form 

fi (x*) = exp { -+ (Rx*, x*)) , 
where R: X* + X is a symmetric positive linear operator called the 
covariance operator of p. Symmetric and positive linear operators R: X* 
-t X, which are covariance operators of Gaussian measures, are called 
Gaussian couariances. A random element in X is called Gaussian if its 
distribution is a Gaussian measure. 

1. Wiener processes. A family of random elements (w)),,I,,,I, &: L? + X 
is called a (homogeneous) Wiener process (with values in X) if 

1. W, = 0 almost surely (as.) ; 
2. for every 0 < to < t, e ... < t,, < 1,  Ti+,  - Ti (i = 0 ,..., n-1) are 

independent random elements ; 
3. for every t~ [0, 11, is a centered Gaussian random element with 

covariance operator tR,  where R: X* + X is a fixed Gaussian covariance; 



4. ,, has a.s. continuous sample paths. 
If X is a finite-dimensional Hilbert space and R is the identity operator, 

then our definition of Wiener process coincides with the usual definition of 
finite-dimensional Wiener process. It is clear that if X is an infinite- 
dimensional HiIbert space, then there does not exist a Wiener process for 
which R is the identity operator. Our definition is a direct extension of the 
definition of a Wiener process for the Hilbert space case ([16], p. 113). 

Gross [5] gave the definition of a Wiener process in the Banach space: 
using the concept of a measurable norm in a Hilbert space, he constructed a 
family of Gaussian measures ( J & , ~ ~ , ~ ~ ;  then, applying this family, he 
constructed a random process and verified the condition guaranteeing the 
continuity of this process. Here we propose another way of constructing the 
Wiener process in a Banach space. 

Let C([O, 11, X) be the vector space of all continuous functions from 
[0, 11 into X. This is a separable Banach space with the norm 

Ilfll, = Sup Ilf (tlllx- 
t ~ [ O I l l  

The functionals dtIx1, t ~ [ 0 ,  11, x * ~  X*, defined by (f, St,,*) = Cfb(t), x*), 
separate points of C([O, I], X), i.e. the set r = {6,,,+, t E [0, 11, X* EX*) is a 
total subset of the dual Banach space C([O, 11, X)*. 

PROPOSITION 1.1, Let (w)r,rO,ll be a Wiener process in X. Then the 
random element W: B + C ([0, I], X), defined by the equality W(o)(t) 
= (o), is a Gaussian random element in C([O, I], X). 

The covariance operator of W on the elements S,,,+E T takes the values 
(RwS,,,*) (s) = min (t, s) Rx*, where R is the covariance operator of Wl . 

Conversely, if W :  0-  C([O, 11, X) is a centered Gaussian random 
element with the conuariance operator (Rw dl,*) (s) = min (t, s) Rx*, where R is 
a Gaussian covariance in X, then the random process w(w) = W(o)(t) is a 
Wiener process in X, and the covariance operator of Wl is R. 

Proof .  The measurability of the map W: B -+ C ([0, I], X) follows 
from the continuity of sample paths of the Wiener process (H9t,[o,11. The 
process ( ~ ) , , 1 , , , 1  is Gaussian, i.e. for all t,, . . . , t, and x:; xz, . . . , x:, 

is a Gaussian random variable. Therefore, for all rp* from the linear span 
L(T) of the total set r, (I.t: q* )  is a Gaussian random variable, hence 
(W, rp*) is Gaussian for all q* E C([O, 11, X)* ([13], th. ll.), i.e. W: i2 
-+ C([O, 11, X) is Gaussian. The covariance operator Rw of the random 
element W transforms C ([0, 11, X)* into C ([O, 11, X) and 

= E ( ( 4 ,  x*) (w, y*)) = min(t, s) (Rx*, y*). 
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Conversely, if W a': C([O, I], X )  is a centered Gaussian random 
element with the covariance operator (RW6,,,~))(s) = min(t, s) Rx*, then the 
random process K(w) = W(o) (t), o E 52, t E 10, 11, is a Wiener process in X. 
In fact, fulfilment of conditions 1, 3, and 4 of definition of the Wiener process 
immediately follows from the properties of the random element W It is easy 
to verify that, for all n, 0 < t ,  < . . . < t, d 1 and x:, . .. , x,*_, from X*, the 
random variables (Ki - RiY x:), i = 1, . . . , n - 1, are non-correlated. 
Hence the Gaussian random variables {Fi+ - wi, xf ), i = 1,. . . , n - 1, are 
independent, i.e. the random elements Ki+, - Ki, i = 1 , .  . ., n -  1, are 
independent. Proposition is proved. 

The following theorem is a generalization of the one-dimensional Ito- 
Nisio theorem ( [6] ,  th. 5.2). It shows also the existence of the Wiener process 
in a separable Banach space for every Gaussian covariance R. 

THEOREM 1.1. Let (e,),, be an ortbronurrnal basis in L2 [0, 11, and (t,),, 
- a sequence bf independent identically distributed centered Gaussian random 
elemenrs in X. Then the series 

a.s. uniformly in f converges in X, and the sum (W3t,I,,11 is a Wiener process 
in X. 

The couariance operator of is tR, where R i s  the cooariance operator 
of tl. 

Proof .  We first show that, for some c > 0, 

P { limsup + {,&>c/]=o. --- 

It follows from the Chebyshev inequality that 

Eexp(cc. 1l5,Il2) - E exp(cc. lltfll12) - 
(log n)'12 eac2(1Gg n) n ~ c *  

for all positive constants a and c. The Fernique theorem [4] implies the 
existence of an a > 0 such that 

~ e x p ( a [ ( ~ , 1 1 ~ ) s c ~ < c o  for all n = 1 , 2 ,  ... 
Choose the constant c > 0 such that orc2 > 1. Then 

and the series 
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is convergent. Hence, by the Borel-Cantelli lemma, we have 

i.e. 

IK.11 = o(&), n = I, 2 ,... a.s. 

Let now (ek),, be the Haar orthonormal basis in L2 [O,  11. It is well- 
known (see e.g. [8], $21) that the number series 

32 1 

is uniformly in t absolutely convergent if Ilakll = Q(k7  for any e < $. 
Therefore the estimation of tails of 11&,11, n = 1, 2, .. ., gives the convergence 
of the series 

a.s. uniformly in r if (e,),, is the Haar basis. It is evident that the sum will 
be an X-valued function a.s. continuous in t, i.e. it represents a random 
element in C([O, 11, X). The random element W CJ + C ( [ O ,  11, X), 

is Gaussian with zero mean and 

Therefore, the sum 

is a Wiener process. The existence of the Wiener process is proved. . 
Let now (e,),, be an arbitrary orthonormal basis in L, [0, 11. It is clear 

that i,: Q-* C([O,  11, X), 

G ( w ) ( ~ )  = { e k ( z ) d z < k ( ~ ) ,  k = 1. z,..., 
0 

I are independent symmetric random elements in C([O, I], X). Let 
I 

n 

S,: Q-tC([O, l],X), s , =  [,, n = 1 ,  2 ,..., 
k =  1 
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be a sequence of partial sums, pn be the distribution of the Gaussian random 
elements Sn, and fin be the characteristic functional of the measure pn. Then 

-+ exp { -4t (Rx*, x*)) = jlw (Gt,x+)7 

where f iw is the characteristic functional of a measure on C([D, I], X) 
corresponding to a Wiener process (Wiener measure). It is easy to see that on 
the linear span of r we also have fin-+ fiw. Hence, by the theorem of Ito- 
Nisio ([6], th. 4.11, we have the a.s. convergence (S,),,, i.e. the a.s. uniformly 
in t convergence of the series 

to a Wiener process. Theorem is proved. 
Now we shall construct another series of independent real-valued 

Wiener processes with coefficients from X, which will converge a.s. uniformly 
in t to the Wiener process in X. First we note that, by the factorization 
lemma ([16], p. 135), the symmetric and positive operator R: X* -, X can be 
factorized through the separable Hilbert space H: R = AA*, where A: H 
4 X is a continuous linear operator. 

I 
THEOREM 1.2. Let R = AA* be a Gaussian couariance, A: H -, X, H be a 

separable Hilbert space. Then,for any orthonormal basis (hJ,,, in H and any 
sequence ([,(t), t&[O, 11) of independent real valued Wiener processes, the 
series 

CD 

C Ah, C,(t) -= w, t €  to, 11, 
n= 1 

a.s. un$ormly in t converges in X and the sum ( ~ ) ) , , 1 , , , 1  is a Wiener process in 
X .  The covariance operator of W, is R.  

Proof.  By Theorem 1.1, for any Gaussian covariance R there exists a 
Wiener process (w)t,Io,,l in X, and we can consider the corresponding 
Gaussian random element W in C([O, 13, X). Introduce a sequence of 
independent symmetric random elements 

qk: Q + C ( [ O ,  I], X), Vk = Ahj'lk, k = l 7  2 ,... 
n 

Let S, = qk, pn be the distribution of S,, ji, be the characteristic 
k =  1 

functional of p,. 'It is easy to see that, for d,,,;.~r, 

fin (lit,,*) = exp(-it 1 (Ah,, x*)') 
k =  1 
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m 
* 8 2  lim fin(St,xb) = exp ( - i t  C (hk, A x In) 

n-rm k =  1 

= exp(-+t {Rx*,  x*}) = fi,(St,,I), 

where ( - , a ) ,  means the inner product in H .  Since the convergence P, 4 ji, 
takes place on the linear span of r and since r is total we see, according to 
the Ito-Nisio theorem, that (SJ,, converges a.s. in C([O, I], X), i.e. the 
series 

converges a.s. uniformly in t in X. It is clear that the limit process is a 
Wiener process in X. Theorem 1.2 is proved. 

Remark. The mentioned results have been announced in our paper 
[lo]. Chcvet [I] obtained these results independently and practically 
simultaneously by a different method. These theorems have been considered 
also in [I21 but the proof of the existence of Wiener process in 1121 is not 
correct. 

Let H be a separable Hilbert space. Define by L,([O, 11, H) the 
separable Hilbert space of vector functions ~ $ 0 ,  11 - H for which 

LEMMA 1.1. Let pw be a Wiener measure on C([O, 11, X )  with the 
covariance operator (Rw 6,,,*) (s) = min (t , s) Rx*, 8,,XL E r, where R: X* -r X is 
a Gaussian covariance in X, and let AA* = R be its factorization through a 
separable Hilbert space H ( A :  H + X). Then the operator 

! 

transforms the canonical Gaussian cylindrical measure on L2([0, I], H )  into 
PW on C(CO, 11, XI. 

Proof.  It is sufficient (see e.g. [2]) to proof the coincidence of the 
operators TT* : C ( [0 ,  11, X)* + C ([0, I f ,  X )  and Rw . To this end it suffices 
to prove that they coincide on the total subset T c C([O, 11, X)*. So we 
have to verify that 

(TT*J , , ,~ ,  = ( ~ ~ d ~ , , ~ ,  ds,ya) for all t, S E  LO, 11 and x*, Y * E  X*. 

Let h~ Lz (10, 11, IP). We shall calculate (T* St,,., h)LZ(H), where 
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(-, -)L2(m means the inner product in L2([0, 11, H). We have 

where &o,tl is the indicator of the set [0, t], i.e. 

Consequently, T* dt,,. = x ~ ~ , ~ ~  A* x*. Then 

= min(t, s) (Rx*, y*) ,  

i.e. TT* = Rw. Lemma 1.1 is proved. 
Now we proof that all Wiener processes have the representation 

established in Theorem 1.1. 
THEOREM 1.3. k t  (mdO,ll be an arbitrary Wiener process in X ,  and 

(e,,),,, - an orthonormal basis in L2 [0, 11. Then there exists a sequence 
({,Jnw of independent identically distributed centered Gaussian random eiements 
in X such that 

Proof.  Let (Y)t,Io,,, be an arbitrary Wiener process and let the 
covariance operator of W, be R = AA*. Since the operator 

has the property TT* = Rw, for all orthonormal bases C f , ) , ,  from the 
Hilbert space L,([O, 11, H) there exists a sequence of standard independent 
Gaussian random variables (y,),, such that 

and the convergence is meant in C([O, 11, X) (see e.g. 1111). Let (h,),, be an 
orthonormal basis in H, and (e,),, - an orthonormal basis in L, [0, 11. 
Then (e, hj)k,ja is an orthonormal basis in L2([0, 11, H). Therefore 

5 - Probability ... 
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where q: N2+ N is some ordering, Qlp-l(k) is an element of the basis 

(4 h j l k , j d V ~  Yv-  ltk) is an element of the sequence (ykj)k,j,, i.e. we have the 
summation in the fixed order. 

Take now any x * ~  X*. Then 

m m t  w m m  

Consequently, 

a.s. when n+m.  We have 

where 

are independent identically distributed Gaussian random elements with 
covariance operator R = AA*. Therefore, by Theorem 1.1, the series 

is a.s. convergent in C([O, 11, X). Hence, by formula (I), we immediately 
obtain that 

as .  for all t E [0, 11 and X* G X*. Therefore 

tt: = C J ek (z)  d~ Sk  a.s. 

Theorem 1.3 is proved. 
The following statement gives the representation of the Wiener process 

in the form of sum of one-dimensional independent Wiener processes. 
THEOREM 1.4. Let ( ~ ) , d o , , l  be a Wiener process in X,  the covariance 
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operator of Wl be R = AA*, A:  H +  X ,  H being a separable Hilhert space. 
Then, for any orthonormal basis (h,JktN in H, there exists. a sequence of 
independent real-valued Wener processes (Ik ( t ) ,  t E 10, I]),, such that 

We omit the proof of this theorem; it is quite similar to that of The- 
orem 1.3. 

BI. Stochastic integral of random fumctioa with values in the dual space. 
Let (~),,1,,,, be a Wiener process in X and suppose that on the probability 
space (B, B, P) there is given a family (Fr)i,ro,lll Fl c B', of o-algebras such 
that if 0 < t ,  < t2  < 1, then Ftl c F12 (in other words, (Fl),,Io,,l is an 

increasing family). We say that (.Ft)t,ro,ll is adapted to the Wiener process 
(K)~E[o,I] if 

(a) is St-measurable for all t  E [ O ,  11; 
(b) W, - 4 is independent of 9, for 0 < t < s < 1. 
As a typical example of an adapted family we can take the s-algebras 

9,, ~ E [ O ,  11, generated by the random elements K, 0 G s G t. 
We will repeatedly use the following 
PROWSITION 2.1. L.et (w)iE[o,ll be a Wenm process, and ( ~ t j , , I , , l l  - a 

fum'ly of a-algebras adapted to (~),a,,,l. Then there exists a representation 

such that (Ft)tEro,ll is adapted to the real-valued Wiener process ((k(t)~EIO,ll  for 
all k E N. 

Proof .  Let R: X* + X be the covariance operator of W,, R .= AA*, 
A: H+ X. There exist an orthonormal basis (h,),, c H and a sequence 
(QP)k,N c X* such that (Ah,, Q; ) = dkj for all k, j~ N (see [17], p. 17). Let 

. be the corresponding representation of ( ~ ) t , l , , l l .  Then the proof of the 
proposition follows from the equality 

Def in i t i on  2.1. A function q: [O, 11 x 9 -+ X* is called non-anticipa- 
ring with respect to (9t)fE[.0,11 i f  

1. for all x E X the function ( t ,  W) 3 (x, (P ( t ,  a)) from (LO, 11 x 4 
9 LO, 1 J x 99) into (R' , B (R1)) is measurable; 
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2. for all X E  X and t~ [D, 11 the function o + (x, q(t, w)) from (a, Bj 
into (R1, 4 (R1)) is Ff-measurable. 

Definition 2.2. We say that a non-anticipating function cp belongs to 
the class GR(X*) if 

GR(X*)  is a Enear space and p, is a pseudonorm in it. Hence, we can 
introduce in GR(Xa) the topology generated by p,. The linear topo1ogical 
spaces (G,(X'), p,) for different covariance operators R are diflerent. If a 
family of a-algebras (9t),,b,11 is fixed and R, < R2 are Gaussian covariances, 
then G R ,  (X*) 3 G,, (X*).  It is easy to see that, for an arbitrary covariance 
R,' all non-anticipating functions from 

L2([OY 11 xQ, B[O, 11 x W ,  A x P ,  X*) 

are contained in GR(X*) (1 denotes the Lebesgue measure on [0, I]). Note 
also that if R is non-degenerate (i.e. Rx* = 0 if and only if x* = O), then p, is 
the norm in G R  (X*). 

If cp€G,(X*) is a step-function, 

then the stochastic integral of cp with respect to (@)t40,11 is naturally defined 
by the equality 

LEMMA 2.1. If ( P E G ~ ( X * )  is a step-function, then 

~ ( J r p d W  ( t ) )  = 0 and ~ ( f c p d W ( t ) ) ~  = J J  (RP, cp)dtdP. 
0 0 0 R 

n- 1 

Proof. Let cp = C vti X D ~ ~ ~ + ~ I .  Then 
i =  0 

Let 
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be a representation of the Wiener process such that (FtX,I,,,l is adapted to 
(Ik (t)X+,. for all k E N. For arbitrary i < n - 1 we have 

m 

It is easy to verify, that 
n- 1 z J? <vq ,  Ki+l  - Wi> <vtj, wj+l - Wj} = 0. 

i # j = O  

Therefore 
1 n- 1 m 

1. 

= 1 J <JkP, cp)dtdP.  
0 R 

Analogously we can show that 
1 

E SrpdW(t) = 0. 
0 

,Lemma 2.1 is proved. 
The.following Iemma will be used to define the stochastic integral of 

arbitrary r p  6 G R  (X*). 
LEMMA 2.2. For an arbitrary q € G R ( X * )  there exists a sequence of 

step-functions ((p,J,, c GR (X*)  such that rp,% v. 
Proof. Let R = AA*, A: H + X, be a factorization of R. Take (h,),,, 

an orthonormal basis in H, and (Qg),, a sequence in Xh such that 
(Ah,, QT)  = 6k,j  ( k ,  j E N). Define 

R 

S,= 1 ( A h k y ~ ) Q : ,  n = l , 2 , - . -  
k =  1 

We have f, E GR (X*) and . 

1 a0 

=SS( C < A h k , ~ ) ~ ) d t d P - t ~ ,  when n - + c o .  
o n  r = ~ + i  



70 B. I. Mamporia 

ing 
P x 

For fixed k E N, let ( v ~ , , , ) ~ ~  be a sequence of real-valued nonanticipat- 
step-functions such that (pk, -, (Ah,, rp) in L2 (a x [ O ,  11, a x @COY 11, 
A), when m - m. For fixed n E N let us define (f,,m)mdY c GR QX*) by 

We have 

Therefore, for all n 6 N, f,, gf,, when rn -P oo . Hence, since f,, 3f, by 
virtue of a standard method we can choose a subsequence (q,J,,, of (&,),,,, 
such that p,(q,-y) + 0 when n -  a. Lemma 2.2 is proved. 

Now, let q E G, (X*). B y  Lemma 2.2, there exists a sequence of step- . 
functions (q+JntlY c G R  (X*) such that p, (q, - q) + 0 when n -. a. For arbi- 
trary n, r n ~  N we have 

1 

Since pR (q, - y,) -t 0 when n,  m + oo, we infer that 1 rp,dW(t) converges 
0 

in L, (Q, .By P). Therefore we can define the stochastic integral for arbitrary 
q E G R  (X*). 

Defin i t ion  2.3. Let ( p ~ G , ( x * ) .  The limit in L,(Q, $3, P) of' the 
sequence 

1 

where (cp,J,, c GR (X*)  is an arbitrary sequence of step-functions converging 
to rp in pseudonorm pR,  is called the stochastic integral of a random function 
(p E GR (X*) with respect to the Wiener process ( ~ d O , , l .  

1 

The stochastic integral of cp is denoted by f qdW(t) .  
0 

It is easy ' to  see that the value of this limit does not depend of an 
approximating sequence of step-functions; in other words, the given 
definition of the stochastic integral is correct. Note also, that 

1 1 

E ( f ~ d W ( t ) ) ~  = j J (RrpY cp)dtdP = ~i(cp) 
0 

O Q  

for any function y = G R  (X*). 
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HI. Stochastic integral of operator-valud random hrsstions. Let (fl),,I,,ll 
be a Wiener process in X, the covariance operator of Wl be R, and (.F~),,~,, , l  
be a family of a-algebras adapted to ( ~ ) t E t O , l l .  Let Y be another separable 
Banach space, Y* be its dual, and L ( X ,  Y) (L(Y*, X*)) be the Banach space 
of bounded linear operators from X to Y (from Y* to X*). 

Def in i t ion  3.1. A function rp: 10, I] x i 2 4  L(X,  Y) is called nun- 
anticipating with respect to (Ft) ,40,11 if 

I. for all X E X  and ~ * E Y *  the real-valued function ( t ,w)  
4 (q ( t ,  o) x, y*) is measurable; 

2. for all XEX, y*€Y*, ~ E [ O ,  1) the function w-+ ( q f f ,  O)X, y * )  is 
.Ft-measurable random variable. 

Def in i t ion  3.2. We say that a non-anticipating function q belongs to 
the class GR(L(X,  Y)) if 

1 

a, = sup (J J ( ~ ( t ,  @RY* ( t , 4 ~ * ,  ~ * ) d t d P ) ' / ~  < a, 
I I Y ' I I ~ ~  O R  

where cp* (t, u) E L(Y*, X*) is the dual operator to q (t, w). 
G R ( L ( X ,  Y ) )  is the linear space and a, is the pseudonorm in it. 
Let ( ~ E G , ( L ( x ,  Y)), and take any y * ~  Y*. q * y *  maps [ O ,  11 xlR into 

X* and ip*y* EG,(X*). Therefore we can define the stochastic integral 
1 

Srp*y*dW(t) which will be a real random variable with variance 
0 

I 

Consider the map 
1 

T,: Y" -, L2(Q, a, P) ,  T, y* = Jcp* y*dW(t). 
0 

It is easy to see that T, is a linear continuous map, i.e., it is a random 
linear function (RLF). 

Def in i t ion  3.3. Let c p ~  G, ( L ( X ,  Y) ) .  The linear continuous map (RLF) 
T, : Y * - L, (52, .g, P), defined by 

I 

T,y*  = Jcp*y*dW(t), y * ~  Y*, 
0 

is called the generalized stochastic integral of operator-valued random func- 
tion cp with respect to ( ~ ) , E l o , l , .  

This implies that for any function ~ E G , ( L ( X ,  Y)) there exists the 
generalized stochastic integral of q. 

Let ip E GR ( L ( X ,  Y)}, q: Y* -+ Lz (St, a, P)  be a generalized stochastic 
integraI of 9. Define by L,: Y* Y** the covariance operator of the 
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generalized stochastic integral (RLF) (see for example 121). It is clear that 
L, = T; T,. 

THEOREM 3.1. The covariance operator of the generalized stochastic 
integral qj' an operator-valued random function q E GR (L(X, Y)) with respect to 
the Wiener process ( ~ ) , , l o , l ,  .has the form 

and m p s  Y* into Y (the double integral is meant in the sence of Pettis). 
Pr o o f. Let us find the value of the operator & on y* E Y*. For any 

yT E Y* we have 
1 1 

{LVy*, Y : )  = ET,  y* T,y: = E ( ~ v * Y *  dW(t) jlp*yi dW(t)) -  
0 0 

It is not difficult: to see that 
1 

{L,y*, yT)=Jj (qRcp*y*,yf)dtdP for all y f ~ Y *  
O P  

Therefore the Pettis integral 

as an element of Y**, exists for any y * ~  Y*. We shall prove that L , ~ * E  Y 
( Y  c Y** is understood in the sense of the natural imbedding). Let 

be an expansion of the covariance operator (see for example [17], p. 17). 
Then 

For all  EN define 

Consider the random element qQ,: [0, I] x B -i l: k = 1 ,  2 , .  . . Since 
qQk is a random element with the weak second order, its covariance 
operator maps Y* intoY (C171, th. 7). We have for the covariance operator 
of vQp: 

I 



Therefore, for a11  EN and y * ~  Y*, Z'y* belongs to Z: Since Y is 
a closed subspace of Y**, it suffices to prove that the sequence ,?!:)y*, n 
= 1, 2,.  . . , converges to & y* in Y** for all y* E Y*. We have 

i sup (J 1 C {Q,, cp* ~f )'dtdp)')' x 
I ( y ~ l I S 1  O Q k = n + l  

Since 
1 1 

> JI<RI*Y*. rn*y*>dfdP= I J ( ~  < Q ~ ,  r p * y * ) ' ) d t d ~ ,  
o n  on k = I  

we have 

Consequently, y* L, y" for n a. Therefore L, g* E Y. Theorem 3.1 
is proved. 

The generalized stochastic integral, as an RLF, induces a cylindrical 
measure on Y which, obviously, cannot always be extended to a countably 
additive measure on the Bore1 0-algebra g ( Y ) .  In other words, T, is not 
always decomposable, i.e. there does not exist in general a random element 
5: SZ-+ Y such that T,y* = ( 5 ,  y*), y * ~  Y*. 

Defin i t ion  3.4. Let rp be an operator-valued function, c p ~  GR ( L ( X ,  Y)). 
We say that a random element 9 :  52 + Y (if such an element exists) is the 
stochastic integral of rp with respect to a mener process (w),,IO,,, if <5, y*)  
= T, y* a.e. for all y* E Y*, and write 

1 

r = JvdWt) .  
0 

Thus the question of the existence of a stochastic integral is reduced to 
the well-known problem on extension of cylindrical measures to countably- 
additive measures or, equivalently, to the problem of decomposability of 
RLF. 

In the concluding part of the paper we deal with a sufficient condition 
for the existence of a stochastic integral. The main point here is the use of 
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the L, Schwartz's theorem saying that an operator between Banach spaces is 
p-Radonfying if and only if it is p-absolutely summing (1 < p < a3) (see [15], 
and [9]). 

Defin i t ion  3.5. We say that a symmetric and positive operator L: Y* 
-+ Y belongs to the class Wp(Y)  (0 < p < m) if the operator T: H + Y in the 
factorization L = TT* is p-absolutely summing. - 

It is easy to see that 9, (Y) c R,, (Y) if p < p,  . 
THEOREM 3.2. Lpt ( p ~  GR(L(X, Y)) and let cr closed subspace G oj' 

L2(Q, 3, P) be such that, far all ~ * E Y * ,  

belongs to G and G c L,(Q, B, P), p 2 2. 
If the operaror L,: Y* + Y, 

1 

L, y* = f J qRy* y* dt dP, 
on 

1 

belongs ro d , ( Y ) ,  then there exists a stochastic integral J(pdW(t)  and 
0 

1 

E IIjvdw(t)llP < 
0 

Proof.  We set Ho = ( T , y * :  ~ * E Y * ) ,  H o  c Lz(St, W ,  P). Let H be the 
closure of H o  in L,(Q, 9, P). H is a Hilbert space and H c G, therefore 
H c L@, P). Factorize now the operator L,: Y * +  Y through the 
Hilbert space H: L, = T, T,*. Since L,E@,(Y), T,*: H - +  Y is P-absolutely 
summing. Let C: H -+ Lp (a, By P) be the natural imbedding: Ch 
= R E  Lp(P, 9, P). By the closed graph theorem, C is bounded. According to 
the aforementioned theorem of L. Schwartz, there exists a random element 
q E L,(St, Y) such that, for all y* E Y*, CT, y* = ( q ,  y*). Since 

we have, for every y* E Y*, 
1 

(g, Y * )  = j rp* Y* dW(t), 
0 

Theorem 3.2 is proved. 
Re.mark. Tf X and Y are separable Hilbert spaces, then the condition of 
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Theorem 3.2 is equivalent to the condition of Yu. Dalelzky [3] in his 
definition of stochastic integral in the Hilbert space. If X and Y are 
separable Banach spaces, then the condition of Theorem 3.2 in the case p = 2 
is equivalent to the condition of H. Kuo [7]. The most interesting is the case 
where p > 2. 
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