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SUP-NORM CONVERGENCE OF THE EMPIRICAL 
PROCESS INDEXF,D BY FUNCFZONS ANID APPUCATIONS 

Abstract. A new approximation of the unifonn empirical and 
quantile processes results in a weak invariance principle indexed by 
functions for the general empirical process. Consequences of this 
result are weak convergence of empirical moment generating, Hall, 
moment and generalized mean processes. 

1. Introduction. Let U1,, < ... < U,,, denote the order statistics of the 
first n of independent uniform -(0, 1) (U (0,  1)) random variables (rv) 
U, , U2,. . . with the corresponding uniform empirical distribution function 
G,( . ) ;  defined to be right continuous and uniform empirical quantile function 

U,(s):=U,, , ,  ( k - l ) / n < s < k / n ( k = l ,  ..., n), 

where U,(O): = U,,,. We define the uniform empirical process 

u,, (s):  = n1I2 (G, (s) - s), 0 < s d 1, 

and the uniform quantile process 

In our paper .[2] we showed that with an appropriate sequence of 
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Brownian bridges .{B,(s); 0 < s b 1) on an appropriately constructed 
probability space we have (cf. Theorem 1.1 of 121) 

(1.1) P i  sup lu,(s)-B,(s)l >n-1/2(alogd+x)]. < be-'", 
OQsSd/n 

whenever no < d 6 n, 0 < x < dl1', where no, a, b and c are suitably chosen 
positive constants. A similar inequality holds true in the neighbourhood of 
one.& When d = n, (1.1) reduces to Theorem 1 of [I]. The latter inequality as 
well as that of (1.1) is based on a similar inequality of Komlbs, Major and 
Tusngdy [9] on approximating partial sums of i.i.d. rv by a Wiener process. 
Our inequality (1.1) leads to Brownian bridge approximations for weighted 
uniform empirical and quantile processes with rates in probability. Several 

I applications of these are given in [2]. One of them is the area of invariance 
principles indexed by functions of which one is going to be used in the 
sequel. In order to state this result, we have to intrdduce some notations. 

When 0 < a < b < l and g is a left continuous and f is a right 
continuous function, then 

h b 

whenever these integrals make sense as Lebesgu+Stieltjes integrals. In this 
case the usual integration by parts formula 

b h 

[.#ag+jsdf = g ( b ) f  tb)-g(a)f  (a) 
a ,  a 

is valid. 
For any Brownian bridge ( B  (s); 0 < s < 11, and with 0 < a < b < 1 and 

the functions f and g as above we define the stochastic integral 

and the same formula for g replacing J 
If g or f  are not finite at at least one of the endpoints, then the 

corresponding integrals are meant as improper integrals whenever they are 
finite in the nonstochastic case and almost surely finite in the stochastic case. 

Let Y denote any class of functions 1 defined on (0,  1) such that 

(Lr.1) Each I can be written as I = I ,  - l , ,  where 1, and 1, are nondecreasing 
left continuous functions defined on (0, 1). 

Let L be a positive nonincreasing function defined on (0, 1/21 slowly 
varying near zero and define 

I Now we are in the position of quoting Corollary 3.2 of [2]. 



THEOREM A. k t  Y be any class of functions I as above, satisfyiny (L1.l) 
and such that 

Then on the probability space of' (1.1) 

In our paper [2] in Corollary 3.4 we replace the limits of integration l/n 
and (n-l)/n by 0 and 1 when integrating with respect to the Brownian 
bridges B, in Theorem A. 

One of the aims of this paper is to extend Theorem A to accommodate 
the general empirical process (cf. Theorem 1.1) and then to extend the limits 
of integration to the reaI line (cf. Theorem 1.2). These results then are going 
to be applied to produce invariance principles for the empirical moment 
generating, Hall, moment and generalized mean processes. 

2. Sargmorm convergence of tlne genera1 empirical process indexed by 
functioms. Let F be a right continuous distribution function and Q be its 
left continuous inverse (quantile function). Let a right-continuous distribu- 
tion function F be given with its left-continuous quantile function 
Q(s) = inf(x:F(x) 2 s), Q(0) = Q(O+), Q(1) = Q ( 1 - ) .  When wishing to 
accommodate the general empirical process P ,  (x) = a, (F (x)) = n1lZ (F,  (x) 
- F (x)), XE(Q (0), Q (I)), based on Q ( U , ) ,  . . . , Q ( U J ,  we let 9F be a class of 
real valued Borel measurable functions g defined on (Q (01, Q (I)), the support 
of F, so that the functions I(s): = g (Q (s)), s ~ ( 0 ,  I), should form an Y class 
satisfying (C.1). In terms of these Y functions we define the corresponding 
N(6)  as before, and whenever g is such that g ( Q ( . ) )  satisfies condition (L'.l), 
we define, for -oo < c < d  < oo, 

i 
I 

where (B(s) ;  0 G s < I]  is any Brownian bridge. Then we have the following 
analogue of Theorem A: 

THEOREM 1.1. Let gF, respectively 9, be the class of functions g ,  
respectively l, as above, satisfying the corresponding (V.1) and (U.2) conditions. 
Then on the probability space of (1.1) we have Theorem A in terms of the latter 
E ( . ) :  = ~ ( Q ( . ) ) E  9 sand also 

w Q(1- l lnl  

(2.2) sup ( J g (x) da, (f; (4) - j g (4 dBn (F (x))J/L(l/n) = 0, (1). 
SE* -a Qr I/n) 
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P r o  of. Assume without loss of generality that each g (Q ( .)) is a non- 
decreasing left continuous function. We have 

m 1 

j g(x)dan(F(x) )  = Jg(Q(s))dcl.Is), always, 
- m 0 

and, by (2.1), 

Since (1.2) automatically holds and says 

in order to verify (2.2) we have to show only that 

Applying integration by parts to both integrals in (2.31, the problem of 
verifying (2.3) reduces to showing that 

and 

Now let y, = max ( l / n ,  F (Q ( l /n ) ) ,  1 -1; (Q ( 1  - l / n ) - ) ) .  Noting that 
F (Q ( l ln))  2 l / n  and 1 - F (Q ( 1  - l jn)  -) 2 l/n, we see that by the definition 
of N ( S )  in our present context the sum of the left -hand side of the above 
two lines is less than or equal to 

which by (V .2 )  equals to o (1 )  O,( l ) .  This also completes the proof 
of (2.2). 

In our next theorem we extend the limits of integration Q ( l ln)  and Q (1 
- l /n )  in (2.2) to - oo and GO. The present method of doing this is 
completely different from that of the mentioned extension of Theorem A in 
[2], Corollary 3.4. 

THEOREM 1.2. Let 93 = gF = {g , ( - ) ;  t~ [a ,  % I d )  be a  function class such 
that [ a ,  b]  is a ,finite interval, d 2 1  is an integer. Assume that B is as in 
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Theorem 1.1,  satisfying its corresponding (L.1) and (L1.23 conditions, the latter 
with L(-) = 1. Assume that the function 

is continuous on [a, bId x [a, b]* and let N,,(b, bId, E) be the minimum 

number of 8,- balls with centres in [a, bid and radii at most E > 0 that cover 
[a,  bid, where a dFball with centre t and radius 6 > 0 is the set Bd,(t, 6)  
= {s: d,(s, t )  < 6 ) .  I f  in ddition to the (LI.1) and (C.2) conditions the metric 
entropy condition 

4 
J(Ca, bld,  d,) = J (log &,([a, bld, e))'/'d& < a, 

0 

is also satisfied, where d ,  = sup{d.(s, t): s, $E [a, b ld]  is the d,-diameter of 
[ a ,  bld, then, on the probability space of Theorem A, as n -, CQ, 

m m 

sup ( j g a b )  da,(f(x))- j gt(x) d ~ , ( F ( x ) ) (  = op(l1. 
r4u,bld -, -a. 

Remark  1.1. A well known sufficient condition of the metric entropy 
condition is 

S 

(2.4) J (qgF (h)/(h(log h- '))'I2)dh < m for some 6 > 0, 
0 

where 

and II.(), stands for the maximum norm in P. We note also that the metric 
entropy condition is Dudley's [4] sufficient condition for the sample 
continuity of the Gaussian process 

where W is a standard Wiener process, and the stochastic integral itself is 
defined as that of (2.1). On the other hand, (2.4) is Fernique's [5]  earlier and 
stronger sufficient condition for the sample continuity of the same process. 
See 161 for the relationship of the two conditions. 

Proof .  In view of (2.2) of Theorem 1.1, whose L ( : )  now is assumed to 
be 1, in order to verify our statement it suffices to show that 

2 - Probability . . . 



with a fixed Brownian bridge {B (s); 0 < s d 1) (W(s)  -sW(l); 0 < s < I) ,  
where 

A.: = {x:x < Q ( I / ~ ) ]  u j x : ~  3 Q(I  - I/,)}. 

We note that the continuity of d$ implies (via the Schwarz and 
Minkowski inequalities) that 

and, a fortiori, ' 

are ail continuous functions on [a, bJd. Hence by Dini's theorem (cf. [ll], 
P- 661 

W(l) sup J1g1(x)ldF(x)=o,(l), n-m.  
j&.bld A, 

Hence, in order to verify (2.51, it suffices to show that 

where 

r , t o :=  1 g,(x)dW(F(x)). 
An 

Set 

d,2 ts, i )  = E (r, (4 - rn t t))2 = 1 (gs ( 4  - $7, dF (x). 
An 

Since d; (s, t) 1 0  as n + cc for any pair s, t E [a, bld, again by Dini's 
theorem, we have 

(2.7) a, = sup d,(s, t) -+ 0 as n -, ao. 
s,r~[a,bl~ 

Since d,(s, t )  < d,(s, t) for s, t~ [a, bld and n 2 1, we have 
B,,(t, 6) c Bdn(t, 6) for any t s  [a, bId, 6 > 0 and n 2 1. Whence 

&,([a, bld, E )  < Ndg([al bid, E) for all E > o and n 2 1 

Thus 



Supnorm convergence 19 

by our metric entropy condition and (2,7). Now a convenient form of 
Dudley's theorem (Theorem 3.1 in [lo]) as applied to the process Tn gwes 
that. there exists an absolute constant K > 0 such that 

where a = ( a , .  . . , a) E P. This bound goes to zero by (2.7) and (2.8) as n 4 cn. 
Hence (2.6) follows by the Markov inequaIity. 

Remark  1.2. It is possible to state Theorem 1.2 for more general classes 
of functions 9fF, not necessarily indexed by a Euclidean parameter. Using the 
general form of Dudley's theorem in Theorem 3.1 of [lo], the proof remains 
the same. The reason for stating Theorem 1.2 in the above simple 
"Euclidean" form is that it is the one that finds applications of interest in the 
sequel. 

3. The empirical moment geraerating function. Let X,, X ,,... be 
independent nondegenerate rv with common distribution F, whose moment 
generating function 

rn 

m(t)  = J d x d F ( x ) .  
- m  

exists in a nondegenerate interval 3 which has one of the following forms: 
(c, d), [c,  dl, (c,  4 or [c, d), where - r ~ ,  ,< c ,< 0 < d < co and c < d. It is 
well known that in such a case rn has derivatives of all orders in the interior 
of J .  

The empirical moment generating function based on XI,. . . , X, is defined 
to be 

and the corresponding empirical moment generating process to be 
m 

M, ( t )  = nil2 (m, ( t )  - m (t))  = j exp ( tx )  da, (F (x) )  . 
-41 

Also, whenever m(2t) < oo, we define the moment generating function 
process to be 

m 

. M  (t )  = j exp (tx) dB (F (x)) . 
- m  

CsiSrgo [3] proved that M ,  converges weakly to M in the Banach space 
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of continuous functions defined on a suitable bounded closed subinterval I 
= [a, b] c J, where the endpints of I are as follows: 

arbitrary negative number if c = - oo, 
if -00 < c < m ,  
if c = 0, 

and 
arbitrary positive number if d = CO, 

if O < d < o o ,  
if d = 0, 

where E = 0 if C E J  and s is an arbitrarily small positive number if c $ J ,  and, 
in a similar fashion 6 = 0 if d~ J and 6 > 0 if d # J .  We will show here that 
this result is also a consequence of our Theorem 1.2. In this case 

gf (x) = expttx) for a < r < b, 
and 

. 
m ( 2 t ) =  $ g ,2(x)dF(x)<ao  for a < t < b .  

In order to demonstrate the said result, we only have to check that 
condition (2.4) holds. Let dt) denote the kth order derivative of m in the 
interior of 1, and let 

f;(u) = m(2t)+m(2(t+u))-2m(2t+u) 

for 0 < u < b-t and a < t  < b. I t  is easy to verify that J(u) is monotone in u 
for each t, and hence, if 0 < h  < b-a, 

Applying a Taylor expansion around zero, we get that for 0 < h < b - a 
and a g t s b - h  

m 

f, (k) = C (Vjk!) (2& - 2) dk) (2t) 
A =  2 

on noticing that f;(O) = 0, which implies that 

lim sup h- p,, (h) < - sup m ( 2 )  (t) < co . 
h 10 ZaS16 2b 

The latter inequality immediately implies (2.4) in our present context. 
Thus we have obtained the following 

THEOREM 2.1. If a and b me defined as above, then on the probability 
space of (1.1), us n -+ m, 

m 

sup ( M ,  ( t )  - $ exp(tx1 dB, (F (x))l = 0, (1) - 
a 6 t S b  - m 



Sup-norm convergence 21 

4. Empirical Hall ht~tiarw. Let X be an rv with finite pth moment. Hall 
[73 proved the interesting result that if p > 0 is not an even integer, then the 
distribution function F of X is completely determined by the translated 
moments function 

The empirical counterpart h, of (4.1) is then of statistical interest, and it 
is defined by 

We introduce the corresponding Hall process H, as 
m 

H,(t):  = n1t2 (h,(t) - h (t)) = S Jx + t J V a ,  (F  (x)), 
- m 

and show that the weak convergence of H ,  (t) in the space of continuous 
functions over an arbitrary finite interval [a, h] is a consequence of Theorem 
1.2 if p > l and E I X ~ ~ Q  m. It is easy to see that condition (Lf . l )  of 
Theorem 1.2 holds. If EjXIzp < m, then 

and, therefore, (L'.2) of Theorem 1.2 is also satisfied for the function g, (x): 
= Ix+tlP. An elementary calculation shows that if p > 1, then 

In order to check for condition (2.4) of Remark 1.1, we have to estimate 
the following integral: 

Using a one term Taylor expansion we get that 

-61 

m 

< It-s12 J p 2 0 ~ f - 2 ( x ) d P ( ~ ) ,  
- w  

where lfl,,, (x)l < max ((x + ti, Ix + sJ). Hence, by (4.2); 



Consequently, in our present context, qgF(h)  of Remark 1.1 is such that 
q,,(h) < Ch with some constant C > 0. Whence also the finiteness of the 
integral of (2.4) in our present context. Thus we proved the following 

THEOREM 4.1. I ~ E I x ~ ~ ~  < a, p > 1, then on the probability space of (1.11, 
as n +  m, 

for any ,finite interval [a,  61. 
Hall [7] also considered another translated moments function 

and proved that if p is not an odd integer, then R.determines F of X 
uniquely. The corresponding empirical version of 6 is 

Introducing 
5 

if,(t):= n112(K,(t)-K(t))  = J Ix+tlPsgn(x+t)da,(F(x)), 
- m  

one can prove similarly as above that if p > 1 and E I Xf '* < GO, then on the 
probability space of (1.1) 

5. Empirical moment and gewralized mean tu~:tion. Let X, X,, X ,,... 
be independent rv with common distribution function F .  We assume that 
P (X > 0) = 1 and consider the empirical moment finction 

with theoretical counterpart k ( t )  = EX' assumed to be finite for t values in a 
finite interval [a, b], where a < 0 < b. We introduce the empirical moment 
process as 

Kn ( t )  = n1I2 (k ,  ( t )  - Ir ( t)) 

together with the empirical generalized mean p c e s s  

D,(t)  = n'12(dn( t ) -d( t ) ) ,  

where dn( t )  = (k , ( t ) ) lh  and d(t) = (k(t))l1' are the empirical and theoretical 
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generalized mean functions. Notice that dn (1) '= (XI + . . . + X,,)/n, the 
arithmetic mean, dn ( - 1) = ((X; + . . . + Xi ')in)- I, the harmonic mean, and 
d,,(O) exists as 

the geometric mean. Also, d(O) exists as 

d (0) : = lim d It) = exp(E log X) 
t -0 

(cf. [83, p. 2013. This is the motivation for including zero in our interval 
[a, b] and, hence, the assumed positivity of the underlying rv. From our 
method of proof it will be clear to the reader how to derive versions of our 
theorem below on other intervals not containing zero. Finally we note that 
both d,(t)  and d(t) are non-decreasing functions of t and . 

lim d, It) = max (XI, . . . , X,,), lim d, ( t )  = min(X, , . . . , X,) . 
1'41 t - - m  

THEOREM 5.1. if E X Z n + E X Z b  < CO, then on the probability space of (1.1), 
as n + GO, 

and 

Proof.  Writing xt = exp(t logx) we see that our moment condition 
ensures that the moment generating function of the rv logX is finite in the 
interval [2a, 2b]. Hence the first statement is a special case of Theorem 2.1. 

Turning to the proof of the second statement we first note that 
d,( t )  -t d ( t )  almost surely as n + c~ at each fixed t E [a, b]. This follows from 
the Iaw of large numbers. Since dn and d are all nondecreasing continuous 
functions, it foIIows by P6lya's theorem that 

(5.1) sup Id, ( t )  - d (t)l + 0 a.s. 
a S t < b  

and similarly 

(5.21 sup lk,(t) - k (t)(  - 0 as., 
a C t < b  

as n +  co. For any t  # 0 we have, by the Lagrange theorem, 

where min {k(t), k,(t)j  < k t ( t )  < max (k(t), k,(t)). 1 r 



By (5.1) and (5.2) it is 'enough to show that 

( 1 )  A,, = sup 

and 
m 

(5.4) dL2) = I D * ( o ) -  d (0) I log x ~ B , ( F  (x)) /  = + ( I ) .  
0 

Let 6 be any number such that 

Then 

and, since 
1D 

the first term is op(l) by the first statement of the theorem. On the other 
hand, the second term is 

by Theorem 4.2.1 in [2], using the Chibisov-O'Reilly function w( t )  
= (t(1 -t))'t2-'. It follows from our moment condition that the sum of these 
two integrals is not greater than a finite constant times 

00 1 

by the choice of 6 in (5.5). This proves (5.3). 
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To prove (5.41, we have again, by Lagrange's theorem, 

d',Z) = )n1j2 {exp (la- ' log Xi)  - exp ( E  log X)}  - d (0) J log x d 3 ,  (F (x))J 
i =  1 0 

6 d (0) In- l t 2  (log Xi - E log X) - J log x d ~ ,  (F  (XI)( + R, 
i= l 0 

m 4) 

= d (0) ( log x dm, (F  (4) - j log x d B ,  (F  + R, 
0 0 

cu 

d (0) ( (a. ( ~ ( x ) )  - B. (F (4)) x- ' dxl + R,,, 
0 

where R, + 0 almost surely by the law of large numbers and the first term is 
o,(l) as a special case ( r  = 0) of (5.6). The theorem is proved. 
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