PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 7, Fasc. 1 (1986), pp. 27-58

LAW OF THE ITERATED LOGARITHM FOR SUBSEQUENCES

Abstract

Allan Gut Abstract: Let $\left\{S_{n}\right\}_{n=1}^{\infty}$ denote the partial sums of i.i.d. random variables with mean 0 . The present paper investigates the quantity $$
\limsup _{k \rightarrow \infty} S_{n_{k}} / \sqrt{n_{k} \log \log n_{k}}
$$ where $\left\{n_{k}\right\}_{k=1}^{\infty}$ is a strictly increasing subsequence of the positive integers. The first results are that if $E X_{1}^{2}<\infty$, then the limit superior equals $\sigma \sqrt{2}$ a.s. for subsequences which increase "at most geometrically", and $\sigma \varepsilon^{*}$, where $$
\varepsilon^{*}=\inf \left\{\varepsilon>0 ; \sum_{k}\left(\log n_{k}\right)^{-\varepsilon^{2} / 2}<\infty\right\}
$$ for subsequences which increase "at least geometrically". We also perform a refined analysis for the latter case and finally present criteria for the finiteness of $$
E \sup _{k}\left(S_{n_{k}} / \sqrt{n_{k} \log \log n_{k}}\right)^{2}
$$ in both cases. 2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; Key words and phrases: -

The full text is available here

