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Abstract. There are established basic inequalities for moments 
of generalized convolutions of probability measures. Moreover, some 
necessary and sufficient conditions for the existence of moments of 
the characteristic measure are given. 

1. Generalized convolutions were introduced in [3]. Let us recall some 
concepts and definitions. 

We denote by P the set of all probability measures defined on Bore1 
subsets of the positive half-line R+ . The set P is endowed with the topology 
of weak convergence. For p~ P and a > 0 we define the map T, by setting 
( T , p ) ( E )  = p ( a - ' E )  for all Bore1 subsets E of R , .  By 6,  we denote the 
probabifity measure concentrated at the point c .  

A continuous in each variable separately commutative and associative 
P-valued binary operation o on P is called a generalized convolution if it is 
distributive with respect to convex combinatious and maps T, (a > 0) with 6 ,  
as the unit element. Moreover, the key axiom postulates the existence of 
norming constants c, and a measure y E P other than 6, such that xnS",  + y, 
where 6", is the n-th power of 6, under o. The measure y is called the 
characteristic measure of o. It is defined uniquely up to a scale change T, 
( a  > 0). 

The set P with the operation o and the operations of convex 
combinations is called a generalized convolution algebra. Generabed 
convolution algebras admitting a nonconstant continuous homomorphism 
into the algebra of real numbers with the operations of multiplication and 
convex combinations are called regular. All generalized convolution algebras 
under consideration in the sequel will tacitIy be assumed to be regular. 

Given a positive real number a, for any p~ P we put 
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By monotone convergence theorem the maps ol -t ma (p) and a + m,* (p)  
are continuous on the left for any p~ P. Moreover, 

whenever r n ~  (p) < m and f i  + a - . Furthermore, by formula (2.13) in [6], 

for all p, v E P.  
We denote by P, and P,* the subsets of P consisting of all p fulfilling the 

conditions mL(p? < m and (m,*(p)l < a, respectively. It is clear that P, and 
Pz are invariant under maps T, (a > 0). 

A homeomorphic map y + ,ii from P into the set of continuous bounded 
real-valued functions on R+ with the topology of uniform convergence on 
every compact subset is said to be a characteristic function of the generalized 
convoIution o if 

for all p, v E P. 
It has been proved in [3] (Theorem 6) that a generalized convolution 

algebra admits a characteristic function if and only if it is regular. By 
Theorem 2.1 in [ 5 ]  the characteristic function is unique up to a scale change. 
Moreover, it is an integral transform . 

a3 

F(t1 = j Adx) 
0 

with a continuous kerneI i2 with the properties ISZ(t)l < 1 ( ~ E R , )  and P(t) 
= 1 - t" L(t), where x > 0 and the function L is slowly varying at the origin. 
The constant x is called the characteristic exponent of the generalized 
convolution o. 

Changing the scale if necessary and taking into account Theorem 7 in 
131 we may assume without loss of generality that the characteristic function 
of the characteristic measure y is given by the formula 

Then, by Lemma 1 in [2], 



Moments ond generalized conuoiutions 

which yields 

l - f i ( t1  - ( ) m x ( y ) - l  lim - - 
t" x P 

t -O f  

for any p~ P ,  other than 6,. 
For every k-tuple p,, p,, .. ., pk from P we put 

Since, by Proposition 1.3 in [ 5 ] ,  for any p, V E P ,  
m m 

j 4 (tx) v { d x )  = J t (tx)'(dx), 
0 0 

we have, by (4), 

where the summation runs over all r-element subsets (i, , i,, . . . , i,] of 
i1 , i2 ,  ..., i r  

the set of indices {I, 2, . . ., k ] .  
Given a # x, 2x, . . . , (k - 1) x, 0 < oc <'kx, we put for any k-tuple 

I 
I and, by formula 
I 

lim cp,(p,,pz ,..., pk)=O ( r = 1 , 2 ,  ..., k - 1 ) .  
a +rx - 

Moreover, if ply p,, . . ., pk # do, then 
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The above relations enable us to define 

for all a satisfying the inequality 0 < o: < kx by setting 

(I2) ~ P ~ ~ ( E L I ~  fi2, ' " 9  ~ k )  = O (r = ' 7  23 " ' 9  k- l )  ' 

and 

The map u + q, (p ,  , p2, . . . , pk) is then continuous on the left. 

.-----. Suppose that p, v E P. Since p o v = j%, we have, by (9) and (lo), 

(14) r p a ( ~ o v ) = r p , ( ! l ) + v u , , l v ) - c p , ( ~ ? v )  (O<a<x). 

Moreover, qa (6,) = x" (6,) and, by Fubini's Theorem, 

Consequently, by (4), 

which yields 

and y~ P (0 < ol < x). Formula (16) has been proved in [I], p. 119. 

2. THEOREM 1. Let p, v E P. Then 

and 

- Proof.  Suppose that 0 < a  < x. Then, by (9), rpQ(6,, 6,) < 0 for all x, y 
and, by (16), q,(d,) < 0. Since, by (14) and (15), 



Moments and generalized convnlutions 177 

we have 

which, by (2), yields inequality (18). Further, by (51, 

is bounded on the interval 0 < or < x. Since 
, 

'I) 

(141, p. 611, we have, by (9), rp,(S,, 6,)/y,(6,)+ 0 as a + x-. Consequently, 
from (21) we get the equation 

~ which, by (2), yields (19). 
Consider the case a > x. We have then the inequality 

which, by (22), implies ma (6, o 6,) 2 x" +IF. Now (20) is a direct consequence 
of (2). This completes the proof. 

From Theorem 1 we get the following statement: 
COROLLARY 1. If 0 < u < X, then the sets Pa me closed under the 

generalized convofutioa o. 

PROPOSITION 1. Let p, v E Pz and p, v # JO. Then 
m 

m:(pov) = m,*(p)+m,*(v)+m,(y) S @ ( p ,  v; t ) t - x - l d t .  
0 

P r o  of. Since Px c P,*, $(t) < 1 and F(t) < 1 for small enough positive t . 
(131, Theorem 5), we infer, by virtue of (6) and (7), that . 

By Theorem 1 (formula (19)) for or < K we have 

which, by (I), yields 
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On the other hand, by (141, (15) and (17),. we have 

%(~ov)-m,C~)-m,(v) = pn,i~)cp,(~, 4. 
Since, by (9) and (ll), 

the above equation together with (23) yield our assertion, which completes 
the proof. 

As a consequence of Proposition 1 we obtain the following statements. 

4 ~ 

COROLLARY 2. If Y E P , ,  then Pz is closed u d e ;  the generalized 
conuolution o. 

COROLLARY 3. If there exists a pair p, vcP such that p, v # do  and 
povsP,*, then YEP,. , 

Corollaries 2 ,and 3 yield 
COROLLARY 4. PEP, if and only if the set Pz is closed under the 

I genmaiized convolution o. 

I COROLLARY 5. If there exists a pair p, V E P  such that p, v f 6, and 
p o v E P,*, then P,* is closed under the generalized convolution o. 

Let k = 1, 2, ... and a >, x. For every integer r and every k-tuple 
p,, p2, . . . , pk from P we put 

if either r < 1 or r > k and 

if 1 < r < k, where the summation is extended over all r-element subsets 
{i,, i,, . . . , i,] of the set of indices I, 2, . . . , k ] .  Obviously, 

v6) % , k ( ~ l ~  p2, ~ k )  = %(PI O P ~ O - * . O A )  

and, by Theorem 1 (formula (19)), 

By Theorem 1 we have also the inequality 
I 

1 Further, by monotone convergence theorem the map 
l 

+ msr,rC~~ 3 P2r . . . l  
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is continuous on the left. Taking into account (2) we easily get the following 
equation: 
(29) m a , r + ~ ( ~ i ? ~ ~ ? . - . ? P t , ~ ~ + i ) + ~ m , r - ~ ( ~ ~ , ~ ~ , . . - ? ~ - ~ ) +  

+m,,,(~117 P2, -.., Pk-11 

LEMMA 1. Given a 2 x and k 2 2. Suppose that t k r e  exists rs constant c, 
such that 

k k 

(30) c ( - I ~ ~ ~ , ~ ( V , ,  v , ,  ..., VJ n %(v,) 
r =  1 j= 1 

for every k-tuple v l ,  v,, . . . , v, with v ,  ov, 0. .  . o vk E Pa. nten for every n > k 

whenever pi op20  ... op,,gPa. 
Pr o of. It suffices to prove (31) for n = k f 1. Suppose that 

Then, by Theorem 1 (formulae (19) and (ZO)), we have 

for pkopk+l-almost all x. Thus, by assumption (30), 

and 
k , k - 1  

C ( - l y % , r ( ~ l ,  PZ, ..-, n - l ? d 3 = c a Y  n mx(II,, 
r =  1 j= 1 

for pkopk+ ,-almost all x. Now applying (24) and (29) we get 
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which, by Theorem 1 (formula (19)), yields (31) for n = k+ 1. This completes 
the proof. 
. LEMMA 2. Giuen k 2 2 and (k- 11% < ct < kx. lhen, for euery k-tuple 
p,, p2, . . ., pk from P with the properties p,, p2, . . ., pk + So, 

(3 2) 1.11 O . . . o ~ k ~ P g -  l ) ~ ,  

(33) - 1  2 9 Sfa # 2% 
arid 

(34) p l o p , ~ P , *  g a = 2 x ,  
we haue 

P r o  of. From assumption (32) and Theorem 1 it follows that p, E P* 
( j  = 1, 2, . .., k) which, by (10) and (131, yields lpm(pl, p,, . .., pk)*)I c m. Since 
R(t) < 1 (j = 1, 2, . . ., k) for small enough positive t ([3], Theorem 5), we 

' infer, by (7) and (91, that lqa (p,, el, . . , , A)/ > 0 provided (k - 1) x < a < kx. 
Finally, consider the case a = kw. Then, by (33) and (34), pl O P ~ E P :  

which, by Corollary 3, yields yep,. Consequently, we get from (13) the 
inequality Iqk% (pl, pt, . . . , pk)I > 0 because mx (pj) > 0 0. = 1, 2, . . . , k). 
Inequality (35) is thus proved. 

Taking into account (26) and (281, we have the inequalities 

which, by (32), yield 

mjx,r(pl, p,, ..., pk)< do G =  1, 2, ..., k-1; r =  1, 2, ..., k). 

Put 

By (27) the equation 

(38)  all^,^ luz, = 0 
holds. 
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Let us introduce the notation 

where the summation runs over all relement subsets (i,, i,, . . ., i,) of 
i l , i x  ,..., i ,  

the set of indices (1, 2, . . ., k ] .  By (8) we have 

I Further, by (28), (33) and (34), 

Consequently, for any j3 satisfying the condition fk - 1) x c P < u we get 

We shall prove (36) by induction with respect to k. First consider the 
case k = 2. Since, by (38), a, (p,, p,) = 0, formula (40) can be rewritten in the 

. form m 

 PI, p2; tx)y(dx) = f (PI, p 2 ;  t, 
0 

which, by (9) and (42), gives 

(Pg (PI 7 P2) q 3  (Y) = q . 2  (PI., P2) - mp.1 (PI 1 ~ 2 )  

for any p from the interval x < fl < o r .  Since all maps /I-+ cpp(pl, y,), 
fl  + q ( y )  and J -+ mp.r(pl, p,) are continuous on the left, the above equation 
and (41) yield (as P-+ or-) formula (36) for all a from the interval x < u ,< 2x. 

Suppose now that k > 2 and (36) is true for all indices less than k. Then 
in particular, for any j-tuple v,, v,, . . . , vj from P satisfying the conditions 
v,, v,, ..., vj # So and v,ov,o ... o v j ~ P j , ,  we have 



182 K. Urbanik 

which, by (13), can be rewritten in the form 

Taking into account (32) and applying Lemma 1 we get the following 
equations : 

k 

C ( - l Y m j M , r { ~ l , p a  , . . . , P ~ ) = O  U = 2 , 3 , . . . 3 k - I ) -  
r =  1 

Thus, by (37h (38) and (40), 

which, by (9) and (42), yields 

for any j3 from the interval (k - 1) x < p < a. Now taking into account (41) 
and the continuity on the left of maps B -+ cps ( p l y  p2 , . . . , pk), B -f mfl ( y )  and 
j3 4 ma,r ( p i ,  pz,  . . . , pk) we get (39 for all or from the interval (k - 1) x 
< a ,< kx, which completes the proof. 

As a direct consequence of Lemma 2 we get the following statement: 

COROLLARY 6. Let k 2 3 ,  ( k - l ) x < a < k x  and YEP,. If p l o p 2 0  ... 
. . . O P ~ E P ( ~ - I ) ~  and m , , k - , ( ~ , ,  ~ 2 ,  ..., iuk) < a, then p l o p 2 0 . . . o ~ ~ P , .  

In fact, the k-tuple p , ,  pz ,  . . . , pk fulfils then conditions of Lemma 2. 
Since the left-hand side of (36) and 

are finite, we infer that 4 , , ( p l ,  p, ,  .. ., pk) < oo, which, by (26), yields our 
assertion. 

Furthermore, from Lemmas 1  and 2 and definition (13) we get the 
following 

COROLLARY 7. Let k 2 2  and n > k .  If p 1 0 p 2 0  ... o p , ~ P ~ ,  and 
P I ?  P2, -.-I A # 6 0 ,  then 
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THEOREM 2. Lei k 2 2 a d  (k-11% < a  < kx. Then Y E P ,  if and only if 
there exists a k-tuple p,, p,, . .., pk from P such that pl, p2, ,. ., pk # a0 and 
PI o ~ 2 0 . . - o ~ k ~ P a  

Proof. Suppose that y Pa. Then, by (4), yDk = T,  y, where c = k*. 
Consequently, yak E Pu which proves the necessity of the condition. To prove 
the sufficiency let us assume that p, , pa, . . , , pk # do and p1 o p2 0. .  . o pk E Pa.  
It is clear that the k-tuple pl, p2, ..., pk fulfils the conditions of Lemma 2 
and, by (26) and (28), the right-hand side of (36) is finite. Thus, by (351, y E P, 
which completes the proof. 

THEOREM 3. Let x < a 6 2x. Then y E P, if and only if tk set Pa is ciosed 
under the generalized convolution o. 

Proof. The sufficiency of ow condition follows immediately from 
Theorem 2. To prove the necessity we assume that y~ Pa.  Consequently, 
y E P, and, by Corollary 2, P,* is closed under the generalized convolution o. 
Thus S,OG,E P,* for any x, y e R + .  This shows that the pair S,, 6, (x, y > 0) 
fulfils the conditions of Lemma 2, which yields the equation 

for positive x and y. If either x = 0 or y = 0, then the above equation is 
evident. Hence, by virtue of (2), we get the formula 

for any pair p, v from Pa. This shows that P, is closed under o which 
completes the proof. 

From Theorems 2 and 3 we get 
COROLLARY 8. Let x < a 6 2x. If there exists a pair p, v with the 

properties p, v # do ~ n d  ~ o v E P , ,  then Pa is closed under the generalized 
conuolutwn o. 

THEOREM 4. Let k > 2 and ( k -  l)x < a ,< kx. If pok€ P,, then p " " ~  P, for 
all n =  l , 2 ,  ... 

Proof. Suppose the contrary. Let k be the least integer for which our 
assertion is false for a certain a from the interval (k-l)x < a  < kx. By 
Corollary 8 and inequality (20) we conclude that 

Let 
(44) pok € Pa 

and 

Obviously p # a0 and, by (201, n > k. Without loss of generality we may 
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assume that 

(46) l I . 5  P a .  

Since our statement is true for the integer k- 1 and P(,- ,,, c Pa,  we 
have Put p1 = p 2  = ... = p k L k - l  = p and pk = p o[n+ 1 - k). -l-hen 

Further, m, (pi, o &, o . . . o pik- l) 6 ma (PO("- 'I) for every (k - 1)-element 
subset (i , ,  i z ,  . . ., i,- ,) of {I,  2, . . ., k). Thus, by (461, 

From (44) and Theorem 2 it follows that y~ P,. Consequently, by (431, 
(47), (48) and Corollary 6, we have 4" = p ,  o p ,  o . .  . o p  P which 
contradicts (45). The Theorem is thus proved. 

The condition p o k ~  Pa of Theorem 4 cannot be replaced by the-weaker 
one , f ( k -  1) E P,. In fact, for the generabed convolution o,, , , defined in [S], 

example 1.6, we have x = 1 and 

y(E)  = J ~ - ~ e x p ( - x - l ) d x .  
E 

Thus (y) = r (2 -a) if 0 < a < 2 and m, (y) = co otherwise. Taking 
k = 2 we have = 8 ,  E Pkx and, accordingly to Theorem 2, a",$ P,,. 

THEOREM 5. Let k 2 2 and pok€ pk;. Then for every n > k 

k 

mkx(pO,  = r = l  ( -1)k+r(: ) ( . - r -1)mkx()107.  k - r  

Proof.  Since for p = &, our statement is obvious, we may assume that 
p # do. Then, by Theorem 4, the n-tuple p, = p, = . . . = p, = p  fulfils the 
conditions of Corollary 7. Thus 

Solving this system of equations we obtain formula (49). 
Example. Let p # 6, and pop€  e. Then, by Corollary 3, y E P,.  Put 

By (6), (T.  gn(t))^ - exp(- tx)  which by (4), yields $9"- y. Moreover, 
by Theorem 1 (formula (19 ), 
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Suppose in addition that k 2 2 and P,,. Then, by Theorem 2, 
y E P,, and, by Lemma 2 and {13), 

Further, from Theorem 5 we get, as n+ co, 

which, by (501, yields 

mkx (q, 4") %K (Y)' 
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